MIT OpenCourseWare <u>http://ocw.mit.edu</u>

3.042 Materials Project Laboratory Spring 2008

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

Image removed due to copyright restrictions. Please see the diagram of bell nodals in https://www.msu.edu/~carillon/batmbook/chapter5.htm HEMONY

3.042 Final Presentation

A. KUNZ, N. CORONEL, S. AVADHANY

Tuned, elaborately decorated cast bells were already being made in China more than 2,500 years ago:

Image removed due to copyright restrictions. Please see: http://upload.wikimedia.org/wikipedia/commons/8/80/Bianzhong.jpg Color closeup image:

notice the intricate designs and gold inlay

Image removed due to copyright restrictions. Please see p. 3 of http://www.savingantiquities.org/pdf/BagleyCPAC.pdf

Princeton University Department of Art and Archaeology

Images removed due to copyright restrictions.

Please see Fig. 18-21 in Williams, Edward. The Bells of Russia: History and Technology. Princeton, NJ: Princeton University Press, 1985.

Each Western culture developed their own unique bell design:

Images removed due to copyright restrictions.

Please see Fig. 118-121 in Williams, Edward. The Bells of Russia: History and Technology. Princeton, NJ: Princeton University Press, 1985.

The ideal "bell metal," an alloy of copper with 23.5% tin, was developed over hundreds of years by trial and error:

In the reign of Henry III [of England], two parts copper to one of tin were used. At the present day copper and tin in the proportion of 13 to 4 are used, and there is no doubt that small quantities of other metals found in old bell-metal are most likely impurities in the metals used to form the alloy.

-W. W. Starmer, "Bells and Bell Tones" (1901)

3 Compositions: 10%, 15%, 23.5% Sn

3 Processes:

Image removed due to copyright restrictions.

Please see http://www.doitpoms.ac.uk/miclib/pds.swf?targetFrame=Cu-Sn

as-cast, annealed, or water quenched

Annealing or Quenching from 620°C

*Destructive mechanical testing uses dogbones that have been water jet from cast plates

Bell Casting

Model Production

Image removed due to copyright restrictions. Please see: Fig. 118 in Williams, Edward. *The Bells of Russia: History and Technology*. Princeton, NJ: Princeton University Press, 1985.

- German bell pattern
- 1/2" offset for plate to hold model between flasks

Lathe aluminum

Casting Process

- Pack foundry sand around model
- Remove model
- Melt metals
- Pour alloy
- Remove casting from sand

SEM

Scanning Electron Microscopy

- Energy Dispersive Spectroscopy (EDS) for elemental analysis
- Actual overall compositions
 - 10% is **10%** Sn
 - 15% is **18%** Sn
 - 23.5% is **31%** Sn
- Compositions of different features help determine what phases are present

10% Sn Bronze

- As-cast: α , δ or ϵ
- Quenched: α
- After quenching,
 second phase is diffused out

As-cast

Quenched

Image removed due to copyright restrictions.

Please see: http://www.doitpoms.ac.uk/miclib/pds.swf?targetFrame=Cu-Sn

18% Sn Bronze

As-cast: α, ε

- Quenched: $\alpha + \epsilon$, ϵ
- After quenching, ε phase moved to grain
 boundaries, α+ε forms

Image removed due to copyright restrictions.

Please see: http://www.doitpoms.ac.uk/miclib/pds.swf?targetFrame=Cu-Sn

- As-cast: α+ε, ε
- Quenched: $\alpha + \epsilon$, ϵ
- After quenching,
 more ε can be seen

Image removed due to copyright restrictions.

Please see: http://www.doitpoms.ac.uk/miclib/pds.swf?targetFrame=Cu-Sn

Mechanical Properties: 10% Sn

Mechanical Properties: 18% Sn

Mechanical Properties: 31% Sn

Young's Modulus Values

	% Sn	E (GPa)	.2% Yield (MPa)	UTS (MPa)	RB
	10	85.3	141.2	241.5	24
	18	76.9	150.4	180.1	48
As-Cast	31	114.2	n/a 288.9		98
	10	77.9	124.1	215	10
	18	72.3	127.5	246.3	25
Annealed	31	118.4	n/a	244.2	98
	10	91.9	134.5	234.2	11
	18	101.9	160.1	352.3	38
Quenched	31	101.7	n/a	215.9	98

	10%	18%	31%
As-Cast	Precipitation hardening	Precipitation hardening	
Annealed	Precipitation hardening; fewer precipitates	Precipitation hardening; fewer precipitates	
Quenched	Solid solution strengthening; no precipitates	Precipitation hardening; fewer precipitates	

Acoustics

Good Bell?

+ Minimal Noise

+ Harmonic Series: 0.5, 1, 1.2, 1.5, 2

Lengthy Amplitude decay

Geometry

10TH

Image removed due to copyright restrictions.

Please see the diagram of bell nodals in https://www.msu.edu/~carillon/batmbook/chapter5.htm

Acoustical Testing

Harmonic Partial Matrix: HERTZ

	1st	2nd	3rd	4th	5th	Wavespeed
10%	1921	2538	3369	4240	7083	1691 m/s
18%	1966	3521	4309	5082	7470	1754 m/s
31%	2162	3714	4762	6499	8047	1818 m/s

Harmonic Multiple Sequence: 1, 1.3, 1.7, 2.2, 3.7

Source of Dissonance: Inharmonic Degeneracy

Minimal beat phenomenon apparent. Damped Harmonic Oscillator

Harmonic Multiple Sequence: 1, 1.8, 2.2, 2.6, 3.8

Hum Tone - Beautiful

BEAT PHENOMENON

18% Sn - Wall Profile Inconsistency

$$\sin(2\pi f_1 t) + \sin(2\pi f_2 t) = 2\cos\left(2\pi \frac{f_1 - f_2}{2}t\right)\sin\left(2\pi \frac{f_1 + f_2}{2}t\right)$$

Harmonic Multiple Sequence: 1, 1.7, 2.2, 3, 3.7

Attenuation Comparison 12 50.000 BOSTITUE NOR 0.000 mann -50.000 Time (seconds) 9.000 3.000 4.000 5.000 7.000 8.000 10.00 1 12 1 1 1 2 3 50.00 0.000 Left Channel 6.000 **1** 12 0 Percent Ful Scale 0.000

FFT Acquisition Setup

Setup - Wavespeed

Piezoelectric transducers -Driver and Receiver

Phase lag for pulse reception

Further Experimentation

Localized heating of upper waist - Proven in experiment

that annealing provides a lower young's modulus for all three alloys. Creates a more elastic connection to (hard) crown.

Upper Waist

This will decrease the bell's frequency, but increase its time for attenuation. Mass of sound bow does not need to be removed.

Acknowledgements

A big thank-you to Prof. David Roylance, Mike Tarkanian, David Bono, Yinlin Xie, and Prof. Ray Ashoori (Physics Dept.)

