Department of Materials Science and Engineering
 Massachusetts Institute of Technology
 3.044 Materials Processing - Spring 2013

Exam I

Wednesday, March 13, 2013

The Rules:

1) No books allowed; no computers allowed; etc.
2) A simple calculator is allowed
3) One hand written 3×5 index card may be used as a crutch
4) Complete 5 out of the 6 problems. If you do more than 5 problems, I will grade the first 5 that are not crossed out.
5) Make sure that you READ THE QUESTIONS CAREFULLY
6) Reasonable assumptions are permitted, but please state them clearly.
7) Supplementary materials are attached to the end of the test (eqns., etc.)
8) WRITE YOUR NAME HERE:

Problem \#1: Why Not Start at the Beginning, with a Heat Balance Problem?
Let's derive the heat conduction equation, but with some bells and whistles added. Let's add anisotropy!

Consider a small square (2D) patch as shown; we will work the problem in 2D and assume a unit thickness on the Z axis, which we will call L_{z}. Unfortunately, this material is anisotropic and has two relevant conductivities, k_{x} and k_{y} on the two axes.

Part A: Write down the "word" equation for the heat balance in this system.

$$
\left.\binom{\text { HEAT IN }- \text { HEAT }}{x}+\left(\begin{array}{cc}
\text { OUT } x
\end{array}\right)+\text { HEAT } \begin{array}{c}
\text { OUT } y \\
y
\end{array}\right)=\begin{aligned}
& \text { HEAT } \\
& \text { ACCUMULATED }
\end{aligned}
$$

Part B: Replace the words with mathematical symbols, but do not rearrange yet.

$$
\begin{aligned}
& d y L_{z}\left(q_{x}^{\prime N}-q_{x}\right)+d x L_{z}\left(q_{i y}-q_{v y}\right)=\rho c_{p} \frac{\partial T}{\partial t} d_{x} d y L_{z} \\
& d y L_{z}\left(\left.k_{x} \frac{\partial T}{\partial x}\right|_{x+d x}-\left.k_{x} \frac{\partial T}{\partial x}\right|_{x}\right)+d x L_{z}\left(\left.k_{y} \frac{\partial T}{\partial y}\right|_{y+d d_{y}}-\left.k_{y} \frac{\partial T}{\partial y}\right|_{y}\right)=\rho c_{p} \frac{\partial T}{\partial t} d x d y L_{z} \\
& \text { Part c: Simplify to the greatest extent possible, to provide a differential equation that is the }
\end{aligned}
$$

Part C: Simplify to the greatest extent possible, to provide a differential equation that is the

$$
\begin{aligned}
& k_{x}\left(\left.\frac{\partial T}{\partial x}\right|_{x+d x}-\left.\frac{\partial T}{\partial x}\right|_{x}\right)+k_{y}\left(\left.\frac{\partial T}{\partial y}\right|_{y+d y}-\left.\frac{\partial T}{\partial y}\right|_{y}\right)=\rho c_{p} \frac{\partial T}{\partial t} \\
& \frac{\partial T}{\partial t}=\frac{k_{x}}{\rho c_{p}} \frac{\partial^{2} T}{\partial x^{2}}+\frac{k_{y}}{\rho c_{p}} \frac{\partial^{2} T}{\partial y^{2}}
\end{aligned}
$$

Part D: Show that you can reproduce the standard, isotropic form of the 2D conduction equation

$$
\begin{aligned}
& \text { in the limiting case where } k_{x}=k_{y} \\
& k=k_{x}=k_{y}, \text { THEN } \frac{\partial T}{\partial t}
\end{aligned}=\frac{k}{\rho c_{p}}\left(\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}\right)
$$

Problem \#2: Hot and Bothered, Cooled and Bored
Take a small block ($\mathrm{L}=0.5 \mathrm{~cm}$) of a refractory material like $\mathrm{Al}_{2} \mathrm{O}_{3}$, and consider how it cools from a very high temperature $\left(1500^{\circ} \mathrm{C}\right)$ while sitting in air.

Part A) On its way from high temperatures to low, we have a competition between radiation, convection, and conduction. At what temperatures is each of these dominant?

$$
\begin{aligned}
& B_{i}=\frac{h L}{k}=0.008 \Rightarrow \text { NO GRADIENTS IN SOLID EVER. } \because \\
& \text { CONDUCTION NEVER LIMITING. } \\
& \text { RADIATION VS. CONVECTION: } h \quad A T A T=1500^{\circ}, Q=0.10 \text { (RAD DOMINANT), }
\end{aligned}
$$

Part B) On the axes below, draw a graph showing schematically how the temperature at the surface of the block drops with time. Explain in one sentence what you have drawn.

Part C) Now a small bore-hole is made through the center of the block along one axis. Draw a second curve on your graph, showing how this hole affects the cooling of the block. Again, explain in one sentence or
 so what your thoughts are that led you to this drawing.
\rightarrow FOR RADIATION "NEWTONIAN" COOLING, T T $t^{-1 / 3}$. (DOESN'T MATER WHETHER YO KNOW THIS, IT JUST SHOD CLEARLY BE STE KIND OF DECREASING POWER LAN THING)
B) InITIALLY, THE TEMPERATURE DRGPS AT TNE RATE DICTATED BY COOLING VIA RADIATION ONLY, HOWEVER, THE "Q" NUMBER IS BETWEEN 0.1 AND 10 FOR $\sim 300^{\circ}<\Delta T<1500^{\circ}$,
SO BOTH RADIATION \& CONVECTION CONTRIBUTE, ACCELERATING THE $1500^{\circ} \mathrm{C}$ 个 COOLING. FOR $\triangle T<300^{\circ} \mathrm{C}$, RADIATION NO LONGER
1500° CONN MATTERS \& COOING IS EXPONENTIAL W/TIME,
TEMP.
c) TWE CORING BY RADIATION IS UNAFFECTED BY THE borenale. However, the CONVECTIVE COOLING is accelerated by the BOREHQE BECAUSE IT increased tide surface area.

Problem \#3: Know When to Neglect Something
We've discussed in some detail when you can neglect something-now please apply those principles to a case we all know well.

Consider heat conduction into the surface of a cylinder with a fixed surface temperature. If we focus on the earliest stages of the process, and the penetration of the heat is small, then we all know intuitively that we can treat this like a l-D Cartesian problem. Let's try to formalize this a bit more.

Part A) Write down the proper form of the conduction equation for this geometry, and also write down the assumed form for a 1-D Cartesian problem.
PROPER FORM:
$1 \frac{\partial T}{\partial t}=\alpha \frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right)$
cartesian Form:

$$
\frac{\partial T}{\partial t}=\alpha \frac{\partial^{2} T}{\partial x^{2}}
$$

Part B) Compare the two forms of the diffusion equation, and identify the terms that need to be neglected in order for the problem to become 1-D Cartesian

2

$$
\begin{aligned}
& \frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right)=\frac{1}{r}\left(\frac{\partial T}{\partial r}+r \frac{\partial^{2} T}{\partial r^{2}}\right)=\frac{1}{r} \frac{\partial T}{\partial r}+\frac{\partial^{2} T}{\partial r^{2}} \\
& \text { IF } \frac{\partial^{2} T}{\partial r^{2}} \gg \frac{1}{r} \frac{\partial T}{\partial r} \text {, THEN THE CARTESIAN APROXIMATION } \\
& \text { IS ACCEPTABLE = I.E, WE MUST NEGLECT THE } \frac{1}{r} \frac{\partial T}{\partial r} \text { TERM. }
\end{aligned}
$$

Part C) Write down a mathematical condition under which you would consider it is OK to neglect the cylindrical geometry in favor of the 1-D Cartesian one. If there is any assumption here, please state it explicitly.

2

$$
\begin{aligned}
& \text { WE NEED } \frac{\frac{\partial^{2} T}{\partial r^{2}}}{\frac{1}{r} \frac{\partial T}{\partial r}} \geq 10 \text { TO JUSTIFY THE APPROXIMATION. } \\
& \text { IT CAN BE APPROXIMATED AS (} \left.T_{\text {SURF }}-T_{\text {INITIAL }}\right) \text {, AND } \\
& \text { Ir CDN BE APPROXIMATED AS }(R-\rho) \text {, AND } \frac{1}{r}=\frac{1}{R} \text {, } 50 \\
& \text { the ratio becomes: } \\
& \frac{\frac{\Delta T}{(R-\rho)^{2}}}{2} \geq 10 \rightarrow \frac{R}{R-\rho} \geq 10 \rightarrow \rho \leq \frac{9}{10} R \text {, WHERE } \rho \\
& \text { IS THE DEPTH OF PENETRATION } \\
& \text { OF HEAT INTO THE } \\
& \text { ChUNDER. }
\end{aligned}
$$

Problem \#4: Meet Rudiger, the Incompetent Heat Transfer Engineer
On your first day on the job at a major manufacturing concern, you are introduced to Rudiger, the engineer in charge of designing annealing and heat treatment furnaces.

Rudiger is considering the heat treatment of a spherical anode of copper. The goal of the exercise is to heat the entire ball to at least $300^{\circ} \mathrm{C}$ to relieve stresses in it. Rudiger places the ball in a shallow pool of hot oil.

Rudiger reasons that in hot oil at $310^{\circ} \mathrm{C}$, the ball will heat up to above $300^{\circ} \mathrm{C}$. He says, "For a spherical geometry, the steady state condition is a uniform temperature". He allows enough time that a steady state is achieved.

Part A:
Qualitatively explain the flaw in Rudiger's logic.
Part B:
Write down a proper set of equations that define this problem, including the equation we must solve, and the boundary conditions for steady state. (Don't solve it, just write the equations)
A) A UNIFORM TEMPERATURE IS THE STEADY STATE FOR A SPHERE IN A UNIFORM ENVIRONMENT. THIS CASE DOES NOT HAVE UNIFORM BOUNDARY CONDITIONS.

$$
\begin{aligned}
& \text { BOUNDARY CONDITIONS. } \\
& \text { B) } O L V E=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial T}{\partial r}\right)+\frac{1}{r^{2} \sin \phi} \frac{\partial}{\partial \phi}\left(\sin \phi \frac{\partial T}{\partial \phi}\right) \text {, }
\end{aligned}
$$

WITH THE BOUNDARY CONDITIONS:

Suffices
-FOR $\begin{aligned} & r=R, \phi \leq \frac{\alpha}{2} \\ & \rightarrow F O R \\ & r\end{aligned}=R, \phi>\frac{\alpha}{2}$
OR, YOU CNN USE TINS BC.:

- Symmetry abut the $\phi=0$ axis=

沙

- WIRER $\phi=0,0 \leq r<R, \& \cdot \phi=180^{\circ}, 0 \leq r<R$, NO GRADIENTS, $\quad \frac{\partial T}{\partial(D R E C T I O N}=0$

Problem \#5: Enlighten Me
Each of the five statements below is false (or at best, is not always true!). Make a simple but nontrivial change (for example, deleting a few words, adding a few words, or both) to each sentence to make it generally true. Write 1 sentence of explanation for each to back up your changes.

AND BLOT
A) When heating an object by immersing it in hot gas or a hot fluid, a higher M number ${ }^{\wedge}$ Is NUMBER desirable to obtain the most rapid kinetics.

THE M NUMBER ONLY TELS YOU ABOUT THE SPEED OF KINETICS VIA RADIATION. THE BlOT NUMBER TELLS YO ABOUT THE SPEED OF KINETICS VIA CONVECTION. IDEALLY, MAKE BOTH LARGE TO MAXIMIZE
B) Cubes, spheres, and any other 3D shape of the same material and characteristic SPEED. dimension \mathbf{V} will cool at the same rate given the same initial and boundary conditions.

AND WITH $\mathrm{Bi}<0.1$.
THE COOING RATE IS INDEPENDENT OF GEOMETRY ONLY
WITHIN THE NEWTONIAN REGIME, OTHERWISE, THEY WILL
ALL COOL DIFFERENTLY.
CONVECTION
C) When cooling an object, a tower Riot number means that condtrion is faster, and therefore cooling is faster. ${ }^{\text {HIGHER }}$ FOR THE SAME OBJECT
FOR. A GIVEN OBJECT, IF THE BLOT NUMBER INCREASES,
THEN CONVECTION IS ACCELERATED, AND COOLING IS
ACCELERATED. HOWEVER, THE BIT NUMBER TELLS YO NOTHING
WIEN COMPARRING THE COOLING OF DIFFERENT OBJECTS.
D) Two objects of the same and the same material hold the same total amount of heat, and therefore cool at the same rate under Newtonian conditions.
GAEACTERSTIC LENGTH SAND THE SAME ENVIRONMENT
THE NEWTONIAN CORING RATE DEPENDS ON pCP (SAME IF SAME MATERIAL), L (NOT VONME), AND IN (SAME IF IN TINE SAME ENVIRONMENT).
E) If (conduction is rapid) then (both M and Bi AR F MAY be important Surer
SWITCH THE CAUSALITY: IF M\&BI ARE LON, THEN THERE ARE NO GRADENTS IN THE SOLD, AND BOTH RADIATION \& CONVECTION MIGHT bE MAPOETANT, THOUGH YO DO NOT KNON WWETRER BOTH, OR JUST ONE ARE DOMINANT UNTIL YO COMPARE hAT\& EO (TSURF $\left.-T_{\text {SOURCE }}^{4}\right)$.

Problem \#6: Wherein a Block of Steel Meets a Fate Common to Lobsters
A cubic centimeter block of steel is at room temperature, and suddenly immersed in $10 \mathrm{~cm}^{3}$ of water at 100 C .

Part A:
What is the steady state for this system?

STEAD STATE IS A UNIFORM TEMPERATURE EVERYWHERE in ThE H2O-STEEL SYSTEM. That TEMPERATURE IS:

Write out a global heat balance for the system. Explain how this could be used to ascertain the

It may be difficult to calculate just how long it would take to get to the steady state in this case. \& T surf. Maybe instead we can calculate lower and upper bounds. Please explain how you would obtain such bounds in this case. ASSUME
2 LOWER BOUND: ${ }^{\wedge} T_{\text {SURF }}=T_{\text {WATER }}$, LEE, THE BLOT HUME IS NIGH
THIS IS THE FASTEST WAY TO WARM THE
CUBE.
1)PPER BOUND: A ASUME TUbe IS SPATIALLY UNIFORM, IE, THE BIOT NLMBER IS SMALL. THIS is THE SLOWEST WAY To warm The cuBE.

MIT OpenCourseWare
http://ocw.mit.edu

3.044 Materials Processing

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

