3.044 MATERIALS PROCESSING

LECTURE 3

We will often be comparing heat transfer steps/processes:
When can we neglect one and focus on the other?

Resistance:

$$
10>\frac{\frac{L_{A}}{k_{A}}}{\frac{L_{B}}{k_{B}}}>0.1 \Rightarrow 10: \quad \text { " } B \text { " conducts fast, cannot sustain a gradient }
$$

Reduce Dimensionality:

$$
\frac{\partial T}{\partial x}=\alpha \nabla^{2} T: \quad T(t, x, y, z)
$$

1. Steady State

$$
\frac{\partial T}{\partial t}=0
$$

2. No Thermal Gradients
$\nabla T=0, \quad T=T(t)$ ONLY $\frac{\partial T}{\partial t}=\ldots$

In general, for solid / "fluid" interfaces: $T_{2} \neq T_{f}$

- constant T, B.C. is not appropriate
- fluid cannot always remove heat at the rate it is delivered

How is heat transferred / removed in the fluid?

- conduction: heat moves, atoms sit still
- convection: atoms flow away, carrying heat with them

1. natural convection (T interacts $\mathrm{w} /$ gravity)
2. forced convection (mechanically driven flow)

- radiation: photons carries heat away

What are the proper B.C.?

1. $T_{2} \neq T_{f}$
2. @ $x=L$, specify flux:

$$
\frac{\partial T}{\partial t}=0=\alpha \frac{\partial^{2} T}{\partial x^{2}}
$$

Step 1: Solve

$$
\begin{aligned}
\frac{T-T_{1}}{T_{2}-T_{1}} & =x L, \quad \text { where } T_{2} \text { is unknown } \\
\Theta & =\chi
\end{aligned}
$$

Step 2: B.C.

$$
\begin{aligned}
& \text { (} \\
& \text { @ } x=L \\
& q_{\mathrm{cond}}=q_{\mathrm{conv}} \\
& -k \frac{\partial T}{\partial x}=h\left(T_{2}-T_{f}\right)
\end{aligned}
$$

Step 3: Solve for $\frac{\partial T}{\partial x}$

$$
\begin{aligned}
\frac{T-T_{1}}{T_{2}-T_{1}} & =\frac{x}{L} \\
T & =T_{1}+\frac{x}{L}\left(T_{2}-T_{f}\right) \\
\frac{\partial T}{\partial x} & =\frac{T_{2}-T_{1}}{L}
\end{aligned}
$$

Plug into: $-k \frac{\partial T}{\partial x}=h\left(T_{2}-T_{f}\right)$

$$
\begin{aligned}
-k \frac{T_{2}-T_{1}}{L} & =h\left(T_{2}-T_{f}\right) \\
\frac{k T_{1}}{L}+h T_{f} & =\left(h+\frac{k}{L}\right) \\
T_{2} & =\frac{\frac{k}{L} T_{f}}{h+\frac{k}{L}}
\end{aligned}
$$

Plug into: $T=T_{1}+\frac{x}{L}\left(T_{2}-T_{f}\right)$

$$
\begin{aligned}
T & =T_{1}+\frac{x}{L}\left[\frac{\frac{k}{L} T_{1}+h T_{f}}{h+\frac{k}{L}}-T_{1}\right] \\
T-T_{1} & =\frac{x}{L}\left[\frac{h\left(T_{f}-T_{1}\right)}{h+\frac{k}{L}}\right] \\
\frac{T-T_{1}}{T_{f}-T_{1}} & =\frac{x}{L}\left[\frac{h \frac{L}{k}}{1+h \frac{x}{L}}\right] \\
\Theta & =\chi\left[\frac{h \frac{L}{k}}{1+h \frac{x}{L}}\right]
\end{aligned}
$$

$$
\frac{h L}{k} \Rightarrow \frac{h}{\frac{k}{l}} \Rightarrow \frac{\frac{L}{k}}{\frac{1}{h}} \quad \text { where } \frac{L}{k} \text { is conductive resistance } \quad \text { and } \frac{1}{h} \text { is convective resistance }
$$

Biot Number: $\frac{h L}{k}$ dimensionless, ratio of resistances

Three Important Cases:

B_{i} small		B_{i} large
$T=T_{1}=T_{2}$ slow/no convection "no gradients in solid" convection is rate limiting $B_{i} \leq 0.1$	transient solution conduction and convection equally important	$\begin{gathered} T_{2}=T_{f} \\ \frac{T-T_{1}}{T_{2}-T_{1}}=\frac{x}{L} \end{gathered}$ rapid convection "fixed surface temp" conduction is rate limiting $B_{i} \geq 10$

Generalize:

1. Imperfect interfaces:

$$
\begin{aligned}
q_{\text {in }} & =q_{o u t} \\
& =h\left(T_{2}^{+}-T_{2}^{-}\right) \quad \text { where } \frac{1}{h}=\text { interface resistance }
\end{aligned}
$$

2. Geometry:

$$
\begin{aligned}
\frac{h L}{k} & \rightarrow \text { What is } L ? \\
L & \approx \frac{\text { volume }}{\text { surface area }}, \text { a characteristic dimension }
\end{aligned}
$$

Examples:

1. plate heated on one side: $L=$ thickness
2. plate heated on both sides: $L=$ half thickness
3. cylinder: $L=\frac{\pi R^{2} l}{2 \pi R l}=\frac{R}{2}$
4. sphere (or other 3D shape): $L=\frac{\frac{4}{3} \pi R^{3}}{4 \pi R^{2}}=\frac{R}{3}$

MIT OpenCourseWare
http://ocw.mit.edu

3.044 Materials Processing

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

