3.044 MATERIALS PROCESSING

LECTURE 5

General Heat Conduction Solutions:

$\frac{\partial T}{\partial t}=\nabla \cdot k \nabla T, T(\bar{x}, t)$
Trick one: steady state $\nabla^{2} T=0, T(x)$
Trick two: low Biot number $\frac{\partial T}{\partial t}=\alpha h\left(T_{s}-T_{f}\right), T(t)$
Transient:

- semi-infinite
- infinite series: book, analytical
- graphical solutions
- computers, numerical, finite elements

Example 1: Continuous glass fiber production

Problem Statement: need to cool from $T=1200 \mathrm{~K}$ to $T=800 \mathrm{~K}$ in 2 ms

Geometry/Coordinates: long cylinder of $10 \mu \mathrm{~m}$ diameter with a moving reference frame

Boundary Conditions:

1. $T_{0}=1200 \mathrm{~K}$
2. @ $r=R$ convection into ambient air: $q=h\left(T-T_{f}\right)$
3. @ $r=0$ implicit symmetry condition: $\frac{\partial T}{\partial r}=0$

Governing Equation: $B i=\frac{h L}{k}$
$L=\frac{\text { vol }}{\text { surface area }}=\frac{\pi R^{2} l}{2 \pi r l}=\frac{R}{2}=2.5 \mu \mathrm{~m}$
$k=$ thermal conductivity of glass $=1.7 \frac{\mathrm{~W}}{\mathrm{mK}}$
h is dependent on the fluid into which you draw the fiber into: $h=10-1000$

$$
B i=\frac{(10-1000)\left(2.5 \times 10^{-} 6\right)}{1.7}(10-1000)\left(10^{-} 6\right) \ll 0.1 \text { Newtonian Cooling }
$$

$$
\begin{aligned}
\frac{T-T_{f}}{T_{0}-T_{f}} & =\exp \left(-\frac{h}{\rho c_{p} L} t\right) \\
L & =\frac{R}{2}=2.5 \mu \mathrm{~m} \\
\rho & =2500 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
\end{aligned}
$$

$$
\begin{aligned}
c_{p} & =0.12 \frac{\mathrm{~kJ}}{\mathrm{~kg} \mathrm{~K}} \\
h & \approx 10-1000 \\
T_{0} & =1200 \mathrm{~K} \\
T_{f} & =300 \mathrm{~K} \\
T & \approx 750 \mathrm{~K}
\end{aligned}
$$

Solve for h (the only changable variable): $h \approx 260 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{~K}}$

- oil bath w/ standoff/air gap
- big fans
- other gases

Example 2: Thermal Spray Coatings / Plasma Spray

Specific Example:
oxyacetylene torch: $T=2700^{\circ} \mathrm{C}$
powder: Ni alloy MAR-M200, $r=2-50 \mu \mathrm{~m}$
Problem Statement: need a particle to melt in flight ($T=T_{m}$, @ $r=0$)
Geometry: assume spherical particle

Boundary Conditions:

1. @ $r=0$ implicit symmetry condition: $\frac{\partial T}{\partial r}=0$
2. @ $r=R$ convection into ambient air: $\quad q=h\left(T-T_{f}\right)$

$$
T_{f}=2700^{\circ} \mathrm{C}, h \approx 500 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{~K}}
$$

Governing Equation: $B i=\frac{h L}{k}=\frac{h R}{k 3}$
$h=500$
$R=$ use larges particle which takes the longest to melt $=50 \mu \mathrm{~m}$
$k=16 \frac{\mathrm{~W}}{\mathrm{mK}}$
$B i \approx 10^{-} 4<0.1$ Newtonian Equation

$$
\begin{aligned}
\frac{T-T_{f}}{T_{0}-T_{f}} & =\exp \left(-\frac{h}{\rho c_{p} L} t\right) \\
T & =T_{m, \mathrm{Ni}}=1700 \mathrm{~K} \\
T_{f} & =3000 \mathrm{~K} \\
T_{0} & =300 \mathrm{~K} \\
h & =500 \\
\rho & =8500 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \\
c_{p} & =0.5 \frac{\mathrm{~kJ}}{\mathrm{~kg} \mathrm{~K}} \\
\frac{R}{3} & =50 \mu \mathrm{~m}
\end{aligned}
$$

Solve for $\mathbf{t}_{\mathbf{c}}: t_{c}=0.18 \mathrm{~s}$
recall: $\mathrm{v}=100 \frac{\mathrm{~m}}{\mathrm{~s}} \Rightarrow$ distance travelled before melting $=18 \mathrm{~m}$

How to decrease t and therefore decrease distance travelled?

- preheat the powder $T_{0} \uparrow$
- better plasma? $T_{f} \uparrow$
- smaller $\mathrm{R} \rightarrow$ plausible but costs a lot of money
- change material
- change $\mathrm{h} \rightarrow$ but h is already pretty large

Arc Melter to increase plasma temperature:

MIT OpenCourseWare
http://ocw.mit.edu

3.044 Materials Processing

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

