3.044 MATERIALS PROCESSING

LECTURE 13

Т	σ, P	С
heat transfer	solid mech., fluid flow	diffusion, phase trans.

Mission for the next part of the course:

Focus on fluid flow, How does fluid flow relate to solid mechanics? How do we connect all three categories?

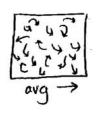
Fluid Flow Terminology

- \cdot free flow against low resistance medium (air)
- \cdot confined flow against a solid boundary
- incompressible flow e.g. water, most melted/liquid matter
 compressible flow e.g. gases, polymer melts (mildly)
 Does pressure change density?
- \cdot laminar flow very uniform motion, low velocity

VS.

VS.

 \cdot turbulent flow - chaotic motion, high velocity

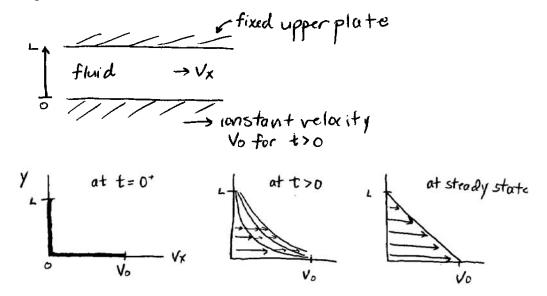


Fluid Flow is the **diffusion** of **momentum**

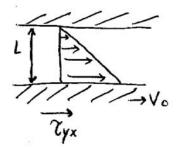
Date: April 2nd, 2012.

<u>1-D Flow:</u>

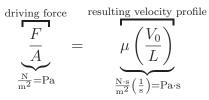
Two flat plates:



In steady-state \rightarrow constant v-profile:

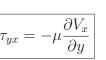


Must be applying a constant Force:



Differentially small element:

Newton's Law of Viscosity: $\tau_{yx} = -\mu \frac{\partial V_x}{\partial y}$



 \rightarrow only applies to simple fluids, **Newtonian** fluids

 \rightarrow We'll return to non-Newtonian fluids later

Compare:

1.
$$\tau_{yx} = -\mu \frac{\partial V_x}{\partial y}$$
 2. $q = -k \frac{\partial T}{\partial x}$ 3. $j = -D \frac{\partial c}{\partial x}$

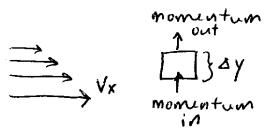
What's Different?

$$\underbrace{\bar{q}}_{\text{vector}} = -k \underbrace{\nabla T}_{\text{grad scalar}} \quad VS. \quad \underbrace{\bar{\sigma}}_{\text{2nd rank tensor}} = -\mu \nabla \underbrace{\bar{v}}_{\text{grad vector}}$$

Stress is equivalent to a Flux of Momentum:

Stress	Momentum Flux
$\frac{F}{A}$	$m \cdot v$
Units: $\frac{N}{m^2} = \frac{kg}{m \cdot s^2}$	Units: $\frac{\text{kg} \frac{\text{m}}{\text{s}}}{\text{m}^2 \cdot \text{s}} = \frac{\text{kg}}{\text{m} \cdot \text{s}^2}$

Momentum Balance (1-D):



$$\underbrace{A \tau_{yx}|_{y}}_{\frac{N}{m^{2}} \cdot m^{2}} - \underbrace{A \tau_{yx}|_{y+\delta y}}_{\frac{N}{m^{2}} \cdot m^{2}} + \underbrace{F_{x} \cdot V}_{\frac{N}{m^{3}} \cdot m^{3}} = \underbrace{V \frac{\partial \left(\rho v_{x}\right)}{\partial t}}_{m^{3} \cdot \frac{kg}{m^{3}} \cdot \frac{m}{s^{2}}}$$
momentum accumulated

Divide through by $V=A\delta y$

$$\frac{\left.\tau_{yx}\right|_{y} - \left.\tau_{yx}\right|_{y+\delta y}}{\delta y} + F_{x} = \frac{\partial\left(\rho v_{x}\right)}{\partial t}$$

Plug in Newton's Law of Viscosity

$$\frac{\mu}{\Delta y} \left(\frac{\partial v_x}{\partial y} \bigg|_{y+\Delta y} - \frac{\partial v_x}{\partial y} \bigg|_y \right) + F_x = \frac{\partial \left(\rho v_x\right)}{\partial t}$$
$$\frac{\mu}{\Delta y} \Delta \frac{\partial v_x}{\partial y} + F_x = \frac{\partial \left(\rho v_x\right)}{\partial t}$$

1-D Fluid Flow Equation

$$\mu \frac{\partial^2 v_x}{\partial y^2} + F_x = \frac{\partial \left(\rho v_x\right)}{\partial t}$$

Assume ρ is constant

$$\mu \frac{\partial^2 v_x}{\partial y^2} + F_x = \rho \frac{\partial v_x}{\partial t}$$
$$\frac{\partial v_x}{\partial t} = \left(\frac{\mu}{\rho}\right) \frac{\partial^2 v_x}{\partial y^2} + \frac{F_x}{\rho}$$

Compare:

1.
$$\frac{\partial v_x}{\partial t} = \underbrace{\left(\frac{\mu}{\rho}\right)}_{\partial y^2} \frac{\partial^2 v_x}{\partial y^2} + \frac{F_x}{\rho}$$

diffusivity of momentum

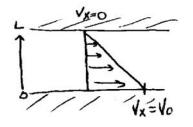
2.
$$\frac{\partial c}{\partial t} = \underbrace{D}_{\text{diffusivity}} \frac{\partial^2 c}{\partial x^2}$$

3.
$$\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}$$

Diffusivity of Momentum is also known as $\underline{$ Kinematic Viscosity}

Units:
$$\frac{\nu = \frac{\mu}{\rho}}{\frac{\text{Ba} \cdot \text{s}}{\frac{\text{kg}}{\text{m}^3}}} = \frac{\text{N} \cdot \text{s} \cdot \text{m}^3}{\text{m}^2 \cdot \text{kg}} = \frac{\text{m}^2}{\text{s}}$$

Momentum diffuses through a flowing fluid



At steady state:

$$\frac{\partial v_x}{\partial t} = \frac{\mu}{\rho} \frac{\partial^2 v_x}{\partial y^2} = 0$$
$$\frac{\partial^2 v_x}{\partial y^2} = 0$$

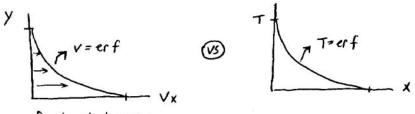
Boundary Conditions:

Solve:

$$v_x = A_y + B$$
$$v_x = v_0 - \frac{v_0}{L} y$$

In order to solve simply:

 \Rightarrow Use diffusion or conduction solutions and compare v_x to c or T



for short times

3.044 Materials Processing Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.