3.044 MATERIALS PROCESSING

LECTURE 22

Slip Casting

zeta potential
high ζ potential \Rightarrow well separated particles in suspension \Rightarrow uniform packing when settled \Rightarrow sinters to a regular structure with uniform grains

- low ζ potential \Rightarrow particles agglomerate in suspension \Rightarrow aggregates settle \Rightarrow larger voids, irregular structure in sintered body
- settling \Rightarrow lower velocity settling \Rightarrow spend more time going over the "repulsive hill" \Rightarrow less flocculation, more uniform settling
- slip casting \Rightarrow highter velocity settling \Rightarrow spend less time going over the "repulsive hill" and enter the flocculation minimum \Rightarrow more flocculation, less uniform settling

Add Macromolecules

$U=H-T S$

\Rightarrow adsorbed macromolecules add entropic repulsion effects

$\underline{\text { Vacuum/Vapor Deposition Processes }}$

- semiconductor devices, integrated circuits, MEMS, etc.
- coatings for decoration (furniture, sports equipment, faucetry) or abrasion resistance (cutting/machining, tooling, blades)

Two main classes of processes

PVD	CVD physical vapor deposition
vacuum process (low pressure)	vapor process (high pressure)
solid or liquid source	gas source
no chemical reaction, just adsorption	
geometry dominated	chemical reactions occur
fluid flow and diffusion dominated	

PVD

1. sputtering

2. e-beam

3. evaporation

啝
4. pulsed laser deposition
5. MBE - molecular beam epitaxy

6. plasma enhanced deposition

PVD Energy Diagram:

source
no chemical reaction: the deposition rate is as fast as atoms are supplied
\Rightarrow geometry dominated, source limited
$\Rightarrow s \propto t \propto$ supplied flux, $J \frac{\mathrm{~mol}}{\mathrm{~m}^{2} s}$
$\Rightarrow \frac{d s}{d t}=J \cdot V_{m}$, where V_{m} is molar volume, geometry factor
e.g. Evaporation

$$
J=\frac{P_{e}-P}{\sqrt{2 \pi M w R T}}
$$

where P_{e} is equilibrium vapor pressure, P is pressure ≈ 0 (vacuum), and $M w$ is molecular weight

Next time: CVD

MIT OpenCourseWare
http://ocw.mit.edu

3.044 Materials Processing

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

