Lecture 17, Energy Absorption Notes, 3.054

Energy absorption in foams

- Impact protection must absorb the kinetic energy of the impact while keeping the peak stress below the threshold that causes injury or damage
- Direction of the impact may not be predictable
- Impact protection must itself be light e.g. helmet

- Capacity to undergo large deformation ($\epsilon \sim 0.8, 0.9$) at constant σ
- Absorb large energies with little increase in peak stress
- Foams roughly isotropic can absorb energy from any direction light and cheap
- For a given peak stress, foam will always absorb more energy than solid it is made from
- Strain rates: Instron typically $\dot{\epsilon} \sim 10^{-8}$ to $10^{-2}/{\rm s}$

impact e.g. drop from height of 1 m, if thickness of foam=100mm

$$v_{\text{impact}} = \sqrt{2gh} = \sqrt{2(9.8)(1)} = 4.4 \text{ m/s}; \quad \dot{\epsilon} \frac{4.4 \text{m/sec}}{0.1 \text{ m}} = 44/s$$

• servo controlled Instrons, drop hammer tests — up to $\dot{\epsilon} = 100/s$

blast: $\dot{\epsilon} = 10^3 - 10^4/s$ — inertial effects impt (we won't consider this)

Energy Absorption

Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

Energy absorption mechanisms

- Elastomeric foams elastic buckling of cells — elastic deformation recovered → rebound — also have damping - energy dissipated as heat
 Plastic foams, brittle foams — energy dissipated as plastic work or work of fracture — no rebound
 Natural cellular materials — may have fiber composite cell walls — dissipate energy by fiber pullout and fracture
 Fluid within cells

 open cell foams — fluid flow dissipation only important if fluid is viscous, cells are small or rates are high
 - $\circ\,$ closed cell foams compression of cell fluid
 - energy recovered as unkading

Energy absorption diagrams

- At stress plateau, energy W increases with little increase in peak stress, σ_p
- As foam densifies, $W \sim \text{constant}$ and σ_p increases sharply
- Ideally, want to be at "shoulder" point
- More generally see Figure
- Test series of one type of foam of different ρ^*/ρ_s at constant $\dot{\epsilon}$ and temperature, T
- Plot W/E_s vs. σ_p/E_s for each curve (E_s at standard $\dot{\epsilon}$ and T)
- Heavy line joins the shoulder points for each curve
- Mark ρ^*/ρ_s for each foam on that line
- Repeat for varying $\dot{\epsilon} \rightarrow \text{join lines for constant } \rho^*/\rho_s$
- Build up family of optimum energy absorption curves
- Can treat different temperatures, T, in same way

Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge University Press, © 1997. Figures courtesy of Lorna Gibson and Cambridge University Press. $_5$

Notes:

- Elastomeric foams can all be plotted on one curve since $E^* \propto E_s$ and $\sigma_{el}^* \propto E_s$ (normalize W/E_s and σ_p/E_s)
- Figure: polyurethane and polyethylene
- polymethacrylimid: $\sigma_{pl}^* \Rightarrow$ typical of foams with plastic collapse stress with $\sigma_{ys}/E_s = 1/30$
- Can generate energy absorption diagrams from data, or use models for foam properties

Modelling energy absorption diagrams

Open cell elastomeric foams

Elastomeric Foams

Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

Flexible Polyurethane

Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. Figures courtesy of Lorna Gibson and Cambridge University Press.

Polymethacrylimid

Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. Figures courtesy of Lorna Gibson and Cambridge University Press.

(a) Linear elastic region $\epsilon < \epsilon_0$

$$W = \frac{1}{2} \frac{\sigma_p^2}{E^*} \qquad \frac{W}{E_s} = \frac{1}{2} \left(\frac{\sigma_p^2}{E_s}\right)^2 \frac{1}{(\rho^*/\rho_s)^2}$$

(b) Stress plateau $\epsilon_0 < \epsilon < \epsilon_D$

$$dW = \sigma_{el}^* \, d\epsilon \qquad \frac{W}{E_s} = 0.05 \, (\rho^*/\rho_s)^2 \, (\epsilon - \epsilon_0)$$

- family of vertical lines on figure
- $\circ\,$ plateau ends at densification strain ϵ_D
- $\circ\,$ then $W\!/E_s$ vs. σ_p/E_s becomes horizontal
- (c) At end of stress plateau $\epsilon \sim \epsilon_D$
 - maximum energy absorbed just before reach ϵ_D (should repoint)

$$\frac{W_{\text{max}}}{E_s} = 0.05 \ (\rho^*/\rho_s)^2 (1 - 1.4 \ \rho^*/\rho_s) \ (\text{assuming } \epsilon_0 <<\epsilon_D \text{ and neglecting } \epsilon_0)$$

• optimum choice of foam is one with shoulder point that lies at $\sigma_p = \sigma_D$ • envelope of shoulder points, for optimum foams, at:

$$\sigma_p = \sigma_D = 0.05 E_s (\rho^* / \rho_s)^2 \qquad \rho^* / \rho_s = \left(\frac{20 \sigma_p}{E_s}\right)^{1/2}$$

Open-cell Elastomeric Foams: Modelling

Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

Substituting into equation for W_{max}/E_s :

$$\frac{W_{\text{max}}}{E_s} = \frac{\sigma_p}{E_s} \left[1 - 1.4 \left(\frac{20 \sigma_p}{E_s} \right)^{1/2} \right] \qquad \qquad \frac{W_{\text{max}}}{E_s} = \frac{\sigma_p}{E_s} \left[1 - 6.26 \left(\frac{\sigma_p}{E_s} \right)^{1/2} \right]$$

• Line of slope 1 at low stresses, falling to 7/8 at higher σ

- (d) Densification
 - when foam fully densified and compressed to a solid, then energy absorption curve joins that for the fully dense elastomer

 $\frac{W}{E_s} = \frac{1}{2} \frac{\sigma_p^2}{E_s}$

Note:

- Model curves have same shape as expts.
- Model shows W/E_s depends on σ_p/E_s and ρ^*/ρ_s only one diagram for all elastomer foams
- For a given W/E_s , σ_p/E_s for the foam less than that of the fully dense solid, by a factor of 10^{-3} to 10^{-1}

Closed-cell Elastomeric Foams: Modelling

Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

Modeling: open-cell foams that yield

- Analysis similar to elastomeric foams, with σ_{pl} replacing σ_{el}
- Note that some closed cell foams that yield, face contribution to $E^* \sigma_{pl}$ negligible
- Neglect fluid contribution

(a) Linear elastic regime: same as elastomeric foam: $\frac{W}{E_s} = \frac{1}{2} \left(\frac{\sigma_p}{E_s}\right)^2 \frac{1}{(\rho^*/\rho_s)^2}$

(b) Stress plateau:
$$\frac{W}{E_s} = 0.3 \frac{\sigma_{ys}}{E_s} \left(\frac{\rho^*}{\rho_s}\right)^{3/2} (\epsilon - \epsilon_0)$$

(c) End of stress plateau: $\frac{W_{\text{max}}}{E_s} \approx 0.3 \ \frac{\sigma_{ys}}{E_s} \left(\frac{\rho^*}{\rho_s}\right)^{3/2} (1 - 1.4 \ \rho^*/\rho_s)$

• optimum choice of foam — absorbs maximum energy without σ_p rising sharply at ϵ_D

Plastic Foams: Modelling

Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. Figures courtesy of Lorna Gibson and Cambridge University Press.

- Curve of optimum energy absorption (heavy line on figure) is envelope that touches $W \sigma_p$ curve at shoulder points
- For σ_p , $\frac{\rho^*}{\rho_s} = \left(\frac{3.3 \sigma_p}{\sigma_{ys}}\right)^{2/3}$
- Substituting in W_{max}/E_s equation: $\frac{W_{\text{max}}}{E_s} = \frac{\sigma_D}{E_s} \left\{ 1 3.1 \left(\frac{\sigma_D}{\sigma_{ys}}\right)^{2/3} \right\}$
- Model curves explain general features of experimental curves
- Modeling curves less general than for elastomers — this cure for a particular value of $\sigma_{\rm er}/E_{\rm e} = 1$
 - this cure for a particular value of $\sigma_{ys}/E_s = 1/100$ (typical value for polymers)

Design and selection of foams for impact protection

• Typically know object to be protected and some details about it

mass, m	max allowable acceleration, a
contact area, A	(e.g. head injury - 100g)
max drop height, h	peak stress allowable, σ_p
(or energy to be absorbed, u)	-

• Variables: foam material, density, thickness

Example 1

Given: mass, m=0.5 kg contact area, A=0.01 m² drop height, h=1 m max deceleration, a=10g foam: flexible polyurethane $E_s = 50$ MPa Find: optimum foam density optimum foam thickness

Example 1: Find Foam Density and Thickness

 Table 8.2
 Example 1: selection of foams

Specification of the problem			
Mass of the package object, $m = 0.5$ kg			
Area of contact between foam and object, $A = 0.01 \text{ m}^2$			
Velocity of package on impact (drop height $h = 1$ m), $v = 4.5$ m/s			
Energy to be absorbed, $U = mv^2/2 = 5 \text{ J}$			
Maximum allowable package force (based on deceleration of 10g), $F = ma = 50$ N			
Maximum allowable peak stress, $\sigma_{\rm p} = F/A = 5 {\rm kN/m^2}$			
Solid modulus in foam (flexible polyurethane), $E_{\rm s} = 50 {\rm MN/m^2}$			
Maximum allowable normalized peak stress, $\sigma_p/E_s = 10^{-4}$			
Iterative procedure			
1st Iteration	$t_1 \gg t$	$t_1 \ll t$	
Initial choice of t_1	1 m	0.001 m	
Resulting strain-rate, $\dot{\epsilon} = v/t_1$	$4.5 \mathrm{s}^{-1}$	$4.5 \times 10^3 \mathrm{s}^{-1}$	
Resulting (W/E_s) at $\sigma_p/E_s = 10^{-4}$	5.25×10^{-5}	7.4×10^{-5}	
Energy absorbed per unit volume, W	2620J/m^3	3700J/m^3	
2nd Iteration			
Revised t_2 (from $U = WAt$)	0.19 m	0.14 m	
Revised $\dot{\epsilon} = v/t_2$	$24 \mathrm{s}^{-1}$	$32 \mathrm{s}^{-1}$	
Revised (W/E_s)	$6.6 imes10^{-5}$	$6.7 imes 10^{-5}$	
Revised W	$3300 J/m^3$	$3350 \mathrm{J/m^3}$	
3rd Iteration			
Revised t_3 (from $U = WAt$)	0.15 m	0.15 m	
Optimum density, ρ^*/ρ_s (Fig. 8.8)	A little below 0.01		

Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. Figures courtesy of Lorna Gibson and Cambridge University Press.

- Energy to be absorbed, $u=mgh=(0.5 \text{ kg})(10 \text{ m/s}^2)(1\text{m})=5 \text{ J}$
- Maximum allowable force on package = F=ma=(0.5 kg)(10g)=50 N
- Peak stress, $\sigma_p{=}{\rm F/A{=}50}$ N / 0.01 m²=5 kN/m²
- Normalized peak stress, $\sigma_p/E_s{=}5~{\rm kPa}~/~50~{\rm MPa}=10^{-4}$
- Draw vertical line on energy absorption diagram at $\sigma_p/E_s = 10^{-4}$
- Need to know $\dot{\epsilon} \approx v/t$ velocity $v = \sqrt{2gh} = 4.5$ m/s
- Iterative approach choose arbitrary thickness, t

• e.g.
$$t_1 = 1 \text{ m}$$

 $\dot{\epsilon} = 4.5/\text{s}$
 $W/\text{E}_s = 5.25 \times 10^{-5}$
 $W/\text{E}_s = 5.25 \times 10^{-5}$
 $W = 2620 \text{ J/m}^3$
 $t_2 = \text{WA/u} = 0.19 \text{ m}$
 $\dot{\epsilon}_2 = 32/\text{s}$
 $W/\text{E}_s = 6.6 \times 10^{-5}$
 $W = 3300 \text{ J/m}^3$
 $W = 3350 \text{ J/m}^3$

Third iteration: $t_3=0.15$ m (both W) Optimum density (Fig) $\rho^*/\rho_s \sim 0.01$ Note: t converges quickly even from very different initial guesses for t

Example 2

Given m = 2.5 kg Find foam material $A = 0.025 \text{ m}^2$ foam density t = 20 mm h = 1 ma = 100 g

Calculate W, $\sigma_p,\,\dot\epsilon$

$$W = \frac{mgh}{At} = \frac{(2.5 \text{ kg})(10 \text{ m/s}^2)(1 \text{ m})}{0.025 \text{ m}^2(0.02 \text{ m})} = 5 \times 10^{-4} \text{ J/m}^3$$
$$\sigma_p = \frac{F_{\text{max}}}{A} = \frac{ma}{A} = \frac{(2.5 \text{ kg})(100)(10 \text{ m/s}^2)}{0.025 \text{ m}^2} = 10^5 \text{ N/m}^2$$
$$\dot{\epsilon} = \frac{v}{t} = \frac{\sqrt{2gh}}{t} = \frac{\sqrt{2(10 \text{ m/s}^2)(1 \text{ m})}}{0.02 \text{ m}} = \frac{4.5 \text{ m/s}}{0.02 \text{ m}} = 225 \text{ /s}$$

Select arbitrary value of $E_s{=}100~\mathrm{MPa}$

Plot
$$W/E_s = 5 \times 10^{-4}$$
 point A
 $\sigma_p/E_s = 10^{-3}$

Example 2: Find Foam Material and Density

Table 8.3 Example 2: selection of foams

Specification of the problem

Mass of the package object, m = 2.5 kgArea of contact between foam and object, $A = 0.025 \text{ m}^2$ Thickness of foam, t = 20 mmDrop height, h = 1 mVelocity of impact $v = (2gh)^{1/2} = 4.5 \text{ m/s}$ Strain-rate $\dot{\epsilon} = v/t = 225/s$ Energy to be absorbed U = mgh = 25 JEnergy to be absorbed per unit volume of foam $W = U/At = 5 \times 10^4 \text{ J/m}^3$ Maximum allowable force (based on decleration of 100g) = 2500 N Maximum allowable peak stress $\sigma_p = F/A = 10^5 \text{ N/m}^2$ Trial design point A, using $E_s = 100 \text{ MN/m}^2$ Normalized energy $W/E_{\rm s} = 5 \times 10^{-4}$ Normalized peak stress $\sigma_p/E_s = 10^{-3}$ Final design point B, read from diagram Normalized energy $W/E_{\rm s} = 1.8 \times 10^{-3}$ Normalized stress $\sigma_{\rm p}/E_{\rm s} = 3.7 \times 10^{-3}$ Resulting derived value of $E_s = 28 \text{ MN/m}^2$

Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. Figures courtes, of Lorna Gibson and Cambridge University Press.

- Construct a line of slope 1 through this point (broken line)
- Moving along this line simply changes E_s
- Select the point where the broken line intersects the appropriate $\dot{\epsilon} \sim 10^2/\text{s}$ (point B)
- Read off values of $W/E_s = 1.8 \times 10^{-3}$ $\sigma_p/E_s = 37 \times 10^{-3}$
- Resulting value of $E_s = 28$ MPa \Rightarrow low modulus, flexible polyurethane
- Replotting on more detailed figure: $\rho^*/\rho_s = 0.1$
- If point A above all energy contours and lone of slope 1 does not intersect them, specification cannot be achieved, A or t has to increase
- If point A below all contours, then A and t larger than need to be can be reduced

Case study: design of car head rest

- Head rest should absorb kinetic energy of head while keeping force less than that which would cause injury
- Example in book: mass of head = 25 kg max. deceleration = a = 50 g = 500 m/s² area of contact, A = 0.01 m² thickness of padding t = 0.17 m max. allowable force F = ma = 1250 N max. allowable stress $\sigma_p = F/A = 125 \text{ kN/m}^2$ energy to be absorbed/vol, W = $\frac{1/2 mv^2}{At} = 735 v^2 \text{ J/m}^3$ peak strain rate $\dot{\epsilon}$ =v/t [s⁻¹] current material — flexible polyester foam $\rho^*/\rho_s = 0.06$ from plot: for $\sigma_p = 125 \text{ kN/m}^2$ W = 5 × 10³ J/m³ maximum collision velocity = v = $\sqrt{\frac{W}{735}} = \sqrt{\frac{5 \times 10^3}{735}} = 2.6 \text{ m/s} = 5.8 \text{ mph}$

Car Head Rest Design

Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. Figures courtesy of Lorna Gibson and Cambridge University Press.

Alternative design #1

- Consider energy absorption diagram for elastomeric foams
- Add sales for polyester (using $E_s=15$ MPa)
- For $\sigma_p = 125 \text{ kN/m}^2$ could use polyester foam $\rho^*/\rho_s = 0.2$

then $W/E_s = 2.6 \times 10^{-3}$ and v = 7.3 m/s =16 mph

Alternative design #2

• Use different material e.g. low density open cell polyethylene $E_s = 200$ MPa

•
$$\sigma_p/E_s = \frac{0.125}{200} = 6.3 \times 10^{-4}$$

• At $\dot{\epsilon} = v/t \approx 100/s$ (estimated)

$$W/E_s = 3.2 \times 10^{-4} \text{ (from fig)}$$

 $W = (3.2 \times 10^{-4})(200MPa) = 6.4 \times 10^4 \text{ J/m}^4$
 $v = \sqrt{\frac{W}{735}} = \sqrt{\frac{6.4 \times 10^4}{735}} = 9.3 \text{ m/s} = 21 \text{ mph}$

• Reading from figure 1: $\rho^*/\rho_s = 0.03$

Case study: foams for bicycle helmets

US: 600-700 bicycle deaths/year

- > 90% not wearing a helmet
- \sim 50,000 cyclists injured (2009)

(US Nat. Hwy Traffic Safety Admin Bicycle Helmet Safety Inst.)

- Helmets consist of solid outer shell and foam liner (e.g. expanded PS)
- Liner thickness typically 20 mm
- Wish to absorb as much energy as possible while keeping peak acceleration less than that to cause head injury
- Foam liner
 - Redistributes load over larger area, reducing stress on head
 - Peak stress on head limited by plateau stress of foam (as long as don't reach densification)
 - \circ Max. tolerable acceleration = 300 g (if for a few milliseconds)
 - $\circ~{\rm Mass}$ of head $\approx 3~{\rm kg}$

 $F_{max} = ma = (3 \text{ kg})(300)(10 \text{ m/s}^2)=9 \text{ kN}$

• As foam crushes, it distributes load over area $\sim A \sim 0.01 \text{m}^2$ (may be high)

$$\sigma_p = \frac{9\text{kN}}{0.01\text{m}^2} = 0.9 \text{ MPa}$$

- Diagram allows easy identification of possible candidate materials
- More complete analysis can then be done
- Energy absorbed U=0.8 \times 10 6 J/m 3 \times 0.01 m 2 \times 0.02 m = 160 J (u=WAt)

•
$$1/2 mv^2 = U; v_{\text{max}} = \sqrt{\frac{2U}{m}} = \sqrt{\frac{2(160)\text{kg}}{3 \text{ kg}}} \frac{\text{m}^2}{\text{s}^2} = 10 \text{ m/s} \approx 22 \text{ mph}$$

Case Study: Foams for Bicycle Helmets

Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. Figures courtesy of Lorna Gibson and Cambridge University Press.

3.054 / 3.36 Cellular Solids: Structure, Properties and Applications Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.