Lecture 20 Nature Sandwich Notes, 3.054

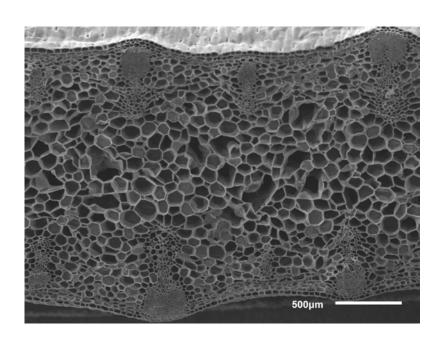
Sandwich structures in nature

- Previously, saw sand structures efficient in resisting bending, buckling
- Sandwich panels also appear in nature:
 - leaves of monocotyledon plants (grasses, corn, iris)
 - o skulls (esp. birds)
 - shells of some arthropods (e.g. horseshoe crab)
 - o cuttlefish bone (mollusk)

Leaves

- Leaves must provide for structural support as well as large surface area for photosynthesis
- Iris, cattail, ryegrass, giant feather grass leaves all sandwich structures

Iris leaves


- Nearly fully dense ribs (sclerenchyma) running along length of outer surfaces
- Ribs separated by a core of foam-like parenchyma cells

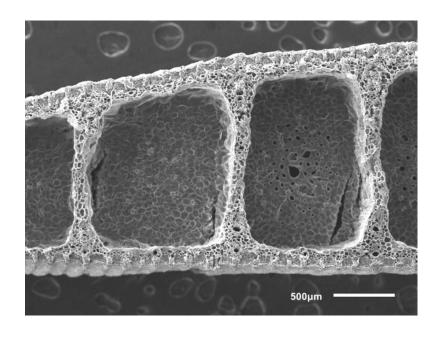

Leaves

Photo of Blaschka glass flowers (iris) at the Harvard Museum of Natural History. Courtesy of Andrew Kuchling on Flickr. License: CC-BY.

Leaves

Iris

Cattail (Bulrush)

Leaves

Figures removed due to copyright restrictions. Figure 1: Vincent, J. F. V. "The Mechanical Design of Grass." Journal of Material Science 17 (1982): 856–60. Figure 2: Vincent, J. F. V. "Strength and Fracture of Grasses." Journal of Material Science 26 (1991): 1947-50.

Iris leaf

Figures removed due to copyright restrictions. See Figures 3 and 4: Gibson, L. J., M. F. Ashby, et al. "Structure and Mechanics of the Iris Leaf." *Journal of Material Science* 23 (1988): 3041-48.

- Measurements of leaf microstructure summarized in Table
- Can analyze leaf as a sandwich structure
- Compare analysis with bending tests on fresh iris leaves
 - cantilevers with weights hung from free end $(B_1 = 3, B_2 = 1)$

$$\left(\frac{\delta}{P}\right)_{\text{calc}} = \frac{2 l^3}{3E_f b t c^2} + \frac{l}{G_c^* b c}$$

t,c measured from micrographs (Table)

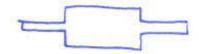
b,l from beam bending tests

 E_f, G_c^* need to estimate

- E_f can be estimated from $E_{rib}V_{rib}$ in face (neglect contribution of square cells in face)
 - ribs sclerenchyma
 - previous studies sclerenchyma from grass leaf fibers $E_{scler} = 2-23$ GPa
 - tensile tests on iris leaves $E_{rib} = 21 \text{ GPa}$
 - volume fraction of ribs in the faces is 0.39 $E_f = 0.39 E_{rib} = 8.2 \text{ GPa}$
- G_c^* assume tissue fresh (E parenchyma constant at high/normal turgor pressure)
 - data for $E_{parenchyma} = 0.5-6 \text{ MPa}$
 - take $E_{parenchyma} \approx 4 \text{ MPa}$
 - $G_c^* \sim 1/2 \; \text{E}_{\text{parenchyma}} = 2 \; \text{MPa}$

Parenchyma Properties

Plant material	Young's modulus, E' or shear modulus, G' (MPa)	Compressive strength, σ_{comp}^* (MPa)	Reference	
Apple	E'= 0.31-3.46	0.66	Oye et al., 2007	
Apple	E' = 2.8-5.8	0.25-0.37	Lin & Pitt, 1986	
Apple	G = 1-6		Vincent, 1989	
Potato	E*= 3.6	1.3	Lin & Pitt, 1986	
Potato	E' = 3.5	10010000	Scanlon et al, 1996	
Potato	E* = 5.5	0.27	Hiller & Jeronimides, 1996	
Potato	G* = 0.5-1	Scanlon et al., 1996; 1998		
Carrot	E* = 2-14		Georget et al., 2003	


Data for fresh, wet tissue, at normal turgor.

Gibson, L. J., M. Ashby, and B. A. Harley. *Cellular Materials in Nature and Medicine*. Cambridge University Press. © 2010. Figure courtesy of Lorna Gibson and Cambridge University Press.

- Using sandwich beam theory, can estimate P/δ (Table)
- Calculation complicated by irregular thickness of core across section:

• Rough attempt to account for this by dividing cross-section into sub-units

- Found calculated P/ρ overestimated measured P/ρ by 16-83%
- Agreement OK for the various approximations and estimates mode

Strength of the leaf

Faces: $\sigma_{ys} = ?$

- Previous tests on tensile strength of gross leaves found σ_f (in MPa) = 1.44 ($V_{\text{sclerenchyma}} \times 100$) + 1.53 \uparrow vol. fraction
- In iris, ribs (assume all sclerenchyma) are 80% dense and make up 40% of face $\sigma_{yf}=1.44(0.8\times0.4\times100)+1.53=47$ MPa

Iris Sandwich Analysis

Table 6.2 Beam bending results

Specimen	1	2	3	4
Measured beam stiffness, $P/\delta(N/mm)$	0.66	0.54	0.41	0.25
Beam length, I (mm)	35	35	35	35
Face thickness, f (mm)	0.03	0.03	0.03	0.03
Maximum core thickness, c (mm)	4.63	3.31	2.49	1.51
Width, b (mm)	18	18	18	18
Flexural rigidity, D (Nm2)	0.027	0.016	0.0096	0.0051
Bending compliance, $(\delta/P)_b$ (m/N)	5.29 x 10 ⁻⁴	8.98 x10 ⁻⁴	1.49×10^{-3}	2.83 x 10 ⁻³
Shear compliance, $(\delta/P)_s$ (m/N)	2.99 x 10 ⁻⁴	3.83×10^{-4}	4.83 x 10 ⁻⁴	6.3×10^{-4}
Calculated beam stiffness, P/δ (N/mm)	1.21	0.78	0.51	0.29
Calculated/measured beam stiffness	1.83	1.44	1.24	1.16

Gibson, L. J., M. Ashby, and B. A. Harley. *Cellular Materials in Nature and Medicine*. Cambridge University Press. © 2010. Figure courtesy of Lorna Gibson and Cambridge University Press.

Core: $\tau_c^* = ?$

- Literature $\sigma_{\text{tenstion}}^* \approx 0.4 \text{ MPa (parenchyma)}$
- Expect $\tau_c^* \sim 1/2\sigma_{\mathrm{tenstion}}^* \sim 0.2~\mathrm{MPa}$
- Calculate strength of iris leaf in wind cantilever, uniformly distributed load $(B_3 = 2 \quad B_4 = 1)$
- Calculate loads at base of leaf (M_{max}): $t \sim 0.03$ mm $l \sim 600$ mm

face yielding:
$$\frac{P_{fy}}{bc} = B_3 \sigma_{ys} \left(\frac{t}{l}\right) = (2)(47 \text{ MPa}) \left(\frac{0.03}{600}\right) = 4.7 \text{ kPa}$$

face wrinkling: $\frac{P_{fw}}{bc} = 0.57 B_3 E_f^{1/3} E_c^{*2/3}(t/l) = (0.57)(2)(8.2 \times 10^9)^{1/3} (4 \times 10^6)^{2/3} \left(\frac{0.03}{600}\right)$
core shear: $\frac{P_{cs}}{bc} = B_4 \tau_c^* = (1) (0.2 \text{MPa}) = 200 \text{ kPa}$

• Expect leaf failure by face wrinkling

- Are iris leaves optimized?
 - $\delta_s/\delta_b = 0.22$ -0.57 in specimens tested
 - \circ in minimum weight design for given stiffness $\delta_s/\delta_b=2$
 - but leaves have several functions beyond mechanical support:
 - photosynthesis requires large surface area
 - fluid transport
 - o difficult to quantify relative importance of each function to plant
 - engineering optimization not possible

Additional examples of sandwich structures in nature:

- Marine "leaves" seaweed Durvillaea antarctica: fronds 12 m long honeycomb core
- Bird skulls
 - if inner and outer face concentric trabeculae oriented perpendicular to cortical shell
 - if inner and outer face not concentric trabeculae foam-like
 - o larger birds have multiple sandwiches
 - since size of trabeculae relatively constant, this may allow larger core thickness
 - o owl skull asymmetry improves hearing

Comparison of optimized sandwich plate with solid plate of same stiffness

- Consider circular plate, radius R, simply supported ground circumference, subject to a uniformly distributed load $q (N/m^2)$
- Central plate deflection is ω
- If sandwich is optimized (based on analysis in book p.384)

$$\frac{\text{mass}}{\pi R^2} = 1.49 \left(\frac{q R}{\omega E_s}\right)^{3/5} \rho_s R \qquad \text{(foam core)}$$

• Equivalent solid plate:

$$\frac{\text{mass}}{\pi R^2} = 0.89 \left(\frac{q R}{\omega E_s}\right)^{1/5} \rho_s R$$

• Taking the ratio:

$$\frac{m_{\text{sandwich}}}{m_{\text{solid}}} = 1.67 \left(\frac{q R}{\omega E_s}\right)^{0.27}$$

• Consider bone sandwich, "foamed" trabecular core: R=100 mm, P=500 N, $\omega=1$ mm (= $q\pi R^2$) $E_s=18$ GPa

$$\frac{q\,R}{\omega\,E_s} = 10^{-4}$$
 $\frac{m_{\rm sandwich}}{m_{\rm solid}} = 14\% \Rightarrow \begin{array}{c} {\rm optimized\ bone\ sandwich\ would\ be} \\ 14\% {\rm\ weight\ of\ solid\ cortical\ panel} \end{array}$

Additional examples (continued)

- Cuttlefish bone (not a fish a mollusk; not bone CaCo₃)
- Horseshoe crab shell
- Tortoise shell (Galapagos)

Durvillaea antarctica (New Zealand Seakelp)

Largest intertidal seaweed Fronds up to 12m long Fronds have gas-filled honeycomb-like core that provides buoyancy as well as flexural rigidity, maximizing surface area exposed to sunlight

© Avenue on Wikimedia Commons. License: CC-BY-SA. This content is excluded from our Creative Commons license. For more information, see: http://ocw.mit.edu/help/faq-fair-use/.

Bird Skulls

Images of bird skulls removed due to copyright restrictions. See Figure 6.7: Gibson, L. J., M. Ashby, et al. *Cellular Materials in Nature and Medicine*. Cambridge University Press, 2010. http://books.google.com/books?id=AKxiS4AKpyEC&pg=PA176

Courtesy of Alison Curtis. Used with permission.

Alison Curtis

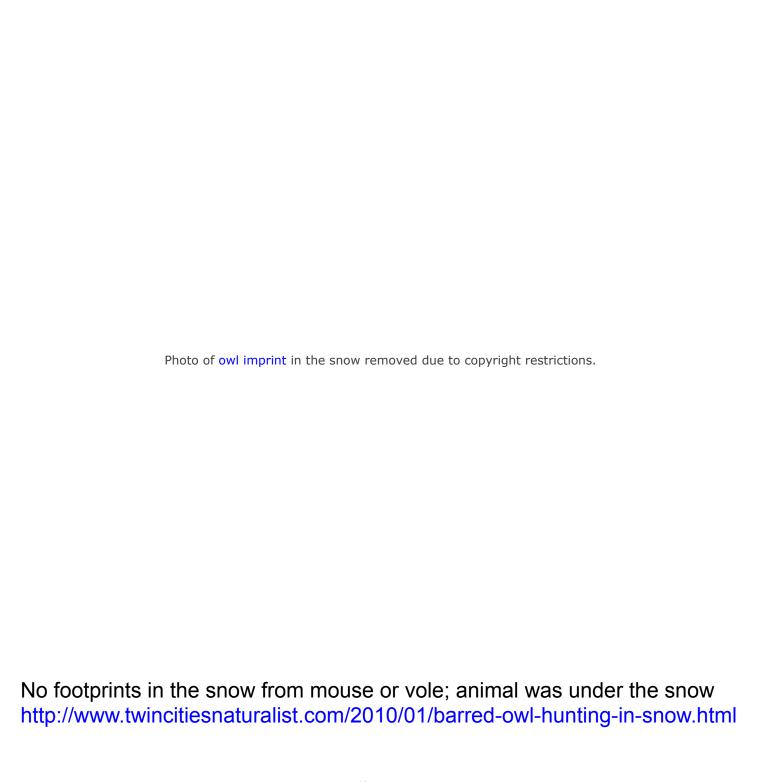


Photo removed due to copyright restrictions. See Summit Post. http://www.summitpost.org/disappearing-rabbit-trick/185785/c-186336

Rabbit tracks in snow

http://www.myconfinedspace.com/2006/12/21/owl-snowprint/

Cuttlefish bone Mollusc shell (CaCO₃)

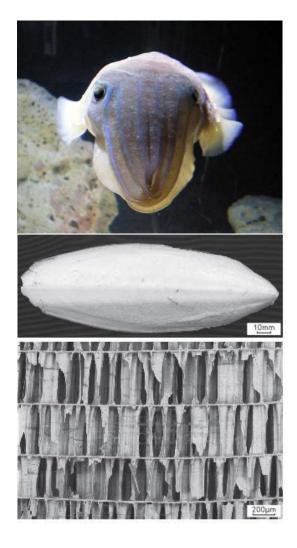
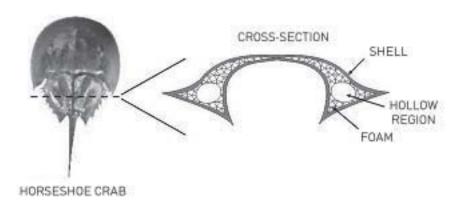



Image is in the public domain. Source: Wikimedia Commons.

Gibson, L. J., M. Ashby, and B. A. Harley. *Cellular Materials in Nature and Medicine*. Cambridge University Press. © 2010. Figure courtesy of Lorna Gibson and Cambridge University Press.

Horseshoe Crab Shell

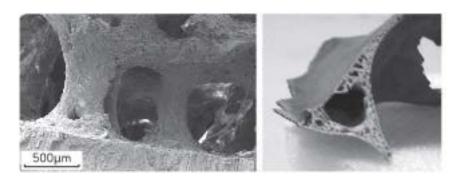


Figure 148: M. A. Meyers, P. -Y. Chen, et al. *Progress in Materials Science* 53 (2008): 1–206. Courtesy of Elsevier. Used with permission.

http://www.sciencedirect.com/science/article/pii/S0079642507000254

Meyers et al., 2008

Galapagos Tortoise Shell

MIT OpenCourseWare http://ocw.mit.edu

 $3.054\ /\ 3.36$ Cellular Solids: Structure, Properties and Applications Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.