Lecture 2, Structure. 3.054

Structure of cellular solids

	• Prismatic in 3^{rd} direction	
3D foams:	• Polyhedral cells pack to fill space	Fig.2.5

• Polygonal cells pack to fill 2D plane

Fig.2.3a

Properties of cellular solid depend on:

- Properties of solid it is made from $(\rho_s, E_s, \sigma_{ys}...)$
- Relative density, ρ^*/ρ_s (= volume fraction solids)
- Cell geometry

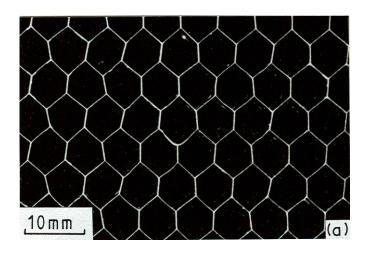
2D honeycombs:

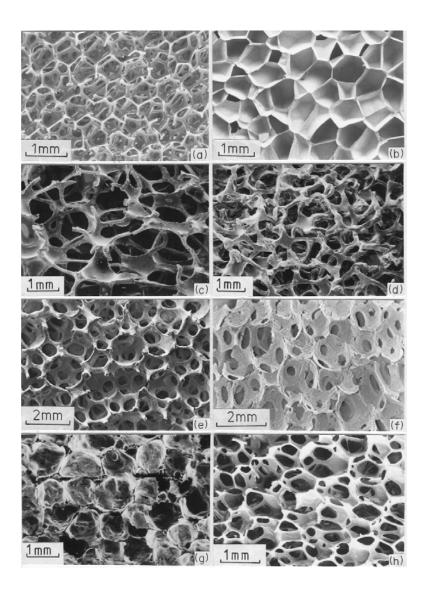
- Cell shape \rightarrow anisotropy
- Foams open vs. closed cells

open: Solid in edges only; voids continuous

closed: Faces also solid; cells closed off from one another

• Cell size - typically not important





Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

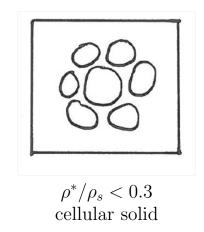
Relative Density

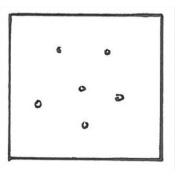
 $\rho^* = \text{density of cellular solid}$ $\rho_s = \text{density of solid it made from}$ $\frac{\rho^*}{\rho_s} = \frac{M_s}{V_T} \quad \frac{V_s}{M_s} = \frac{V_s}{V_T} = \text{volume fraction of solid (= 1-porosity)}$

Typical values:

collagen - GAG scaffolds: $\rho_*/\rho_s = 0.005$ typical polymer foams: $0.02 < \rho_*/\rho_s < 0.2$ soft woods: $0.15 < \rho_*/\rho_s < 0.4$

- As ρ^*/ρ_s increases, cell edges (and faces) thicken, pore volume decreases
- ullet In limit o isolated pores in solid





 $\rho^*/\rho_s > 0.8$ isolated pores in solid

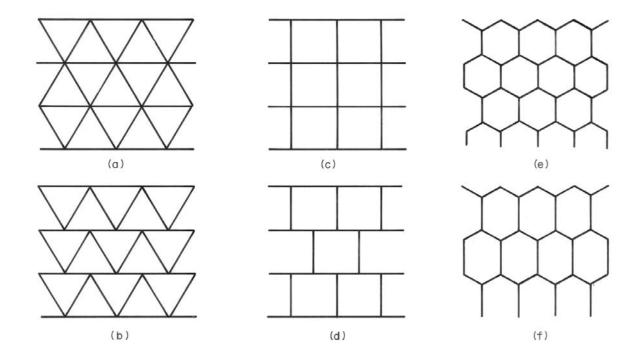
Unit Cells

2D honeycombs:	- Triangles, squares, hexagons	Fig.2.11
	- Can be stacked in more than one way	
	- Different number of edges/vertex	
	- Fig. 2.11 (a)-(e) isotropic; others anisotropic	
3D foams:	Rhombic dodecahedra and tetrakaidecahedra pack to fill space (apart from triangles, squares, hexagons and prisms)	Fig.2.13
	(apart from triangles, squares, nexagons and prisms)	
	[Greek: hedron = face; do = 2; deca = 10; tetra = 4; kai = and]	
	Tetrakaidecahedra - bcc packing; geometries in Table 2.1	
• Foams often	made by blowing gas into a liquid	

- If surface tension is only controlling factor and if it is isotropic, then the structure is one that minimizes surface area at constant volume
- **Kelvin (1887):** tetrakaidecahedron with slightly curved faces is the single unit cell that packs to fill space plus minimizes surface area/volume Fig.2.4

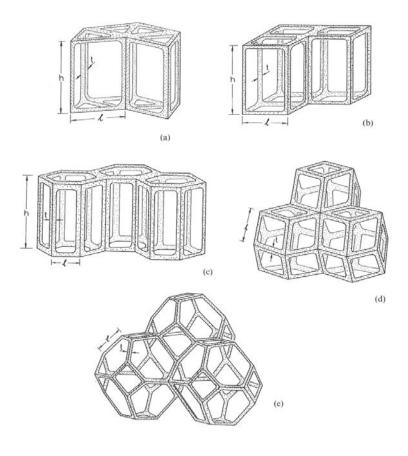
Weaire-Phelan (1994): identified "cell" made up of 8 polyhedra that has slightly lower surface area/volume (obtained using numerical technique - "surface evolver")

Unit Cells: Honeycombs



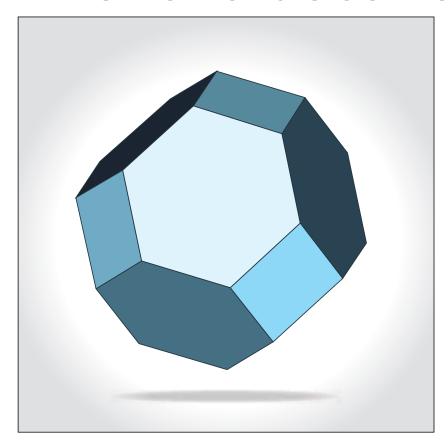
Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

Unit Cells: Foams



Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

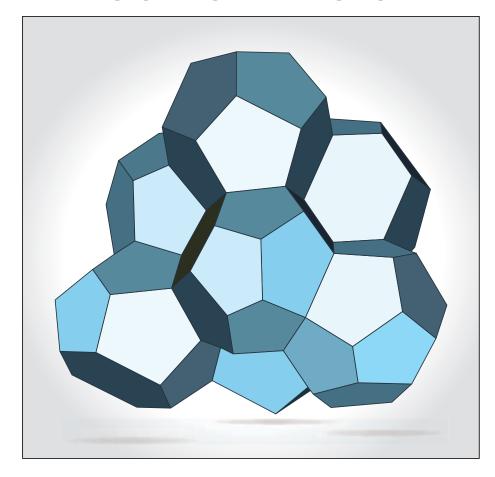
Unit Cells: Kelvin Tetrakaidecahedron



Kelvin's tetrakaidecahedral cell.

Source: Professor Denis Weaire; Figure 2.4 in Gibson, L. J., and M. F. Ashby. *Cellular Solids Structure and Properties*. Cambridge University Press, 1997.

Unit Cells: Weaire-Phelan



Weaire and Phelan's unit cell.

Source: Professor Denis Weaire; Figure 2.4 in Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. Cambridge University Press, 1997.

Voroni Honeycombs and Foams

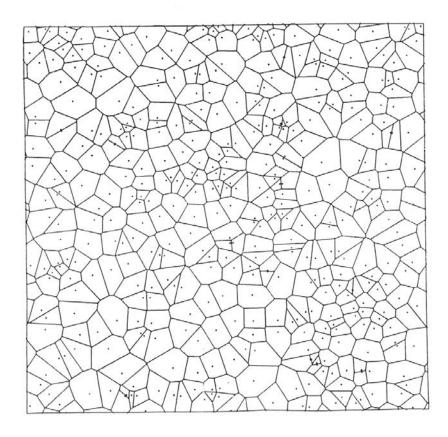
- Foams sometimes made by supersaturating liquid with a gas and then reducing the pressure, so that bubbles nucleate and grow
- Initially form spheres; as they grow, they intersect and form polyhedral cells
- Consider an idealized case: bubbles all nucleate randomly in space at the same time and grow at the same linear rate
 - obtain Voroni foam (2D Voroni honeycomb)
 - Voroni structures represent structures that result from nucleation and growth of bubbles

Fig.2.14a

- Voroni honeycomb is constructed by forming perpendicular bisectors between random nucleation points and forming the envelope of surfaces that surround each point
- Each cell contains all points that are closer to its nucleation point than any other
- Cells appear angular
- If specify exclusion distance (nucleation points no closer than exclusion distance) then cells less angular and of more similar size

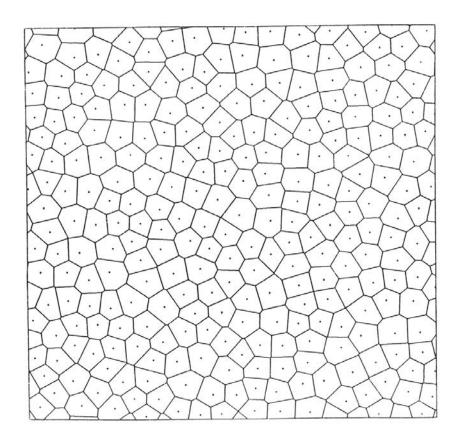
Fig.2.14b

Voronoi Honeycomb



Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

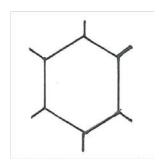
Voronoi Honeycomb with Exclusion Distance



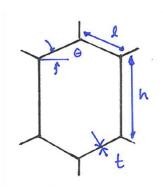
Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

Cell Shape, Mean Intercept Length, Anisotropy

Honeycombs



regular hexagon: isotropic in plane



elongated hexagon: anisotropic h/l, θ define cell shape

Foams

- Characterize cell shape, orientation by mean intercept lengths
- Consider circular test area of plane section
- \bullet Draw equidistant parallel lines at $\theta=0^\circ$
- Count number of intercepts of cell wall with lines:

 N_c = number of cells per unit length of line

$$L(\theta = 0^\circ) = \frac{1.5}{N_c}$$

Huber paper Fig.9

Mean Intercept Length

Figures removed due to copyright restrictions. See Fig. 9: Huber, A. T., and L. J. Gibson. "Anisotropy of Foams." *Journal of Materials Science* 23 (1988): 3031-40.

Mean intercept

- Increment θ by some amount (eq. 5°) and repeat
- Plot polar diagram of mean intercept lengths as $f(\theta)$
- Fit ellipse to points (in 3D, ellipsoid)
- Principal axes of ellipsoid are principal dimensions of cell
- Orientation of ellipse corresponds to orientation of cell
- Equation of ellipsoid: $Ax_1^2 + Bx_2^2 + Cx_3^2 + 2Dx_1x_2 + 2Ex_1x_3 + 2Fx_2x_3 = 1$
- Write as matrix M: $M = \begin{bmatrix} A & B & E \\ D & B & F \\ E & F & C \end{bmatrix}$
- Can also represent as tensor "fabric tensor"
- If all non-diagonal elements of the matrix are zero, then diagonal elements correspond to principal cell dimensions

Connectivity

- Vertices connected by edges which surround faces which enclose cells
- Edge connectivity, Z_e = number of edges meeting at a vertex typically Z_e = 3 for honeycombs Z_e = 4 for foams
- Face connectivity, Z_f = number of faces meeting at an edge typically, Z_f = 3 for foams

Euler's Law

• Total number of vertices, V, edges, E, faces, F, and cells, C is related by Euler's Law (for a large aggregate of cells):

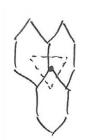
$$2D: F - E + V = 1$$

$$3D: -C+F-E+V=1$$

For an irregular, 3-connected honeycomb (with cells with different number of edges), what is the average number of sides/face, \bar{n} ?

$$Z_e = 3$$
 $\therefore E/V = 3/2$ (each edge shared between 2 vertices)
If $F_n =$ number of faces with n sides, then:

$$\sum \frac{nF_n}{2} = E \text{ (factor of 2 since each edge separated two faces)}$$

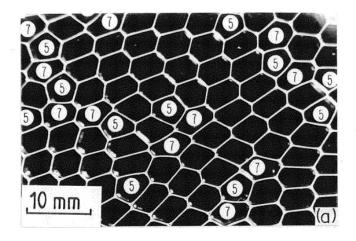


Using Euler's Law:

$$F-E+rac{2}{3}E=1$$
 As F becomes large, RHS $ightarrow 0$ $F-rac{1}{3}\sum rac{nF_n}{2}=1$ $F-rac{1}{3}\sum rac{nF_n}{2}=1$ As F becomes large, RHS $ightarrow 0$ $\frac{\sum nF_n}{F}=$ average number of sides per face, \bar{n} $\bar{n}=6$ For 3-connected honeycomb, average number of sides always 6.

Fig.2.9a

Euler's Law



Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press. © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

Soap Honeycomb

Aboav-Weaire Law

- Euler's Law: for 3-connected honeycomb, average number of sides/face=6
- Introduction of a 5-sided cell requires introduction of 7-sided cell, etc
- Generally, cells with more sides (in 2D) (or faces, in 3D) than average, have neighbors with fewer sides (in 2D) (or faces, in 3D) than average

Weaire - derivation

• 2D: If a candidate cell has n sides, then the average number of sides of its n neighbors is \bar{m} :

$$\bar{m} = 5 + \frac{6}{n} \qquad (2D)$$

Lewis' Rule

- Lewis examined biological cells and 2D cell patterns
- Found that area of a cell varied linearly with the number of its sides

$$\frac{A(n)}{A(\bar{n})} = \frac{n - n_0}{\bar{n} - n_0}$$

$$A(n) = \text{area of cell with } n \text{ sides}$$

$$A(\bar{n}) = \text{area of cell with average number of sides, } \bar{n}$$

$$n_0 = \text{constant (Lewis found } n_0 = 2)$$

- Holds for Voronoi honeycomb; Lewis found holds for most of other 2D cells
- Also, in 3D:

$$\frac{V(f)}{V(\bar{f})} = \frac{f - f_0}{\bar{f} - f_0}$$

$$V(f) = \text{volume of cell with } f \text{ faces}$$

$$V(\bar{f}) = \text{volume of cell with average number of faces, } \bar{f}$$

$$f_0 = \text{constant, } \approx 3$$

Modeling cellular solids - structural analysis

Three main approaches:

- 1. Unit cell
 - E.g. honeycomb-hexagonal cells
 - Foam tetrakaidecahedra (but cells not all tetrakaidecahedra)
- 2. Dimensional analysis

Foams - complex geometry, difficult to model exactly

- instead, model mechanisms of deformation and failure (do not attempt to model exact cell geometry)
- 3. Finite element analysis
 - Can apply to random structures (e.g., 3D Voronoi) or to micro-computed tomography information.
 - Most useful to look at local effects (e.g., defects missing struts osteoporosis size effects)

MIT OpenCourseWare http://ocw.mit.edu

 $3.054\ /\ 3.36$ Cellular Solids: Structure, Properties and Applications Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.