Lecture 4 Honeycombs Notes, 3.054

Honeycombs-In-plane behavior

- Prismatic cells
- Polymer, metal, ceramic honeycombs widely available
- Used for sandwich structure cores, energy absorption, carriers for catalysts
- Some natural materials (e.g. wood, cork) can be idealized as honeycombs
- Mechanisms of deformation and failure in hexagonal honeycombs parallel those in foams
- simpler geometry - unit cell - easier to analyze
- Mechanisms of deformation in triangular honeycombs parallel those in 3D trusses (lattice materials)

Stress-strain curves and Deformation behavior: In-Plane

Compression

- 3 regimes - linear elastic - bending
- stress plateau - buckling
- yielding
- brittle crushing
- densification - cell walls touch
- Increasing $t / l \Rightarrow E^{*} \uparrow \sigma^{*} \uparrow \quad \epsilon_{D} \downarrow$

Honeycomb Geometry

Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge University Press, $\quad \mathbb{1 9 9 7}$. Figure courtesy of Lorna Gibson and Cambridge University Press.

Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

Deformation mechanisms

Bending X_{1} Loading

Bending Shear

Bending X_{2} Loading

Buckling

Plastic collapse in an
aluminum honeycomb

Stress-Strain Curve

Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

Tension

- Linear elastic - bending
- Stress plateau - exists only if cell walls yield
- no buckling in tension
- brittle honeycombs fracture in tension

Variables affecting honeycomb properties

- Relative density $\frac{\rho^{*}}{\rho_{s}}=\frac{\left(\frac{t}{l}\right)\left(\frac{h}{l}+2\right)}{2 \cos \theta\left(\frac{h}{l} \sin \theta\right)}=\frac{2}{\sqrt{3}} \frac{t}{l} \quad$ regular hexagons
- Solid cell wall properties: $\rho_{s}, E_{s}, \sigma_{y s}, \sigma_{f s}$
- Cell geometry: $h / l, \theta$

In-plane properties

Assumptions:

- t/l small $\left(\left(\rho_{c}^{*} / \rho_{s}\right)\right.$ small $)$ - neglect axial and shear contribution to deformation
- Deformations small - neglect changes in geometry
- Cell wall - linear elastic, isotropic

Symmetry

- Honeycombs are orthotropic - rotate 180° about each of three mutually perpendicular axes and structure is the same

Linear elastic deformation

$$
\left[\begin{array}{l}
\epsilon_{1} \\
\epsilon_{2} \\
\epsilon_{3} \\
\epsilon_{4} \\
\epsilon_{5} \\
\epsilon_{6}
\end{array}\right]=\left[\begin{array}{cccccc}
1 / E_{1} & -\nu_{21} / E_{2} & -\nu_{31} / E_{2} & 0 & 0 & 0 \\
-\nu_{12} / E_{1} & 1 / E_{2} & -\nu_{32} / E_{3} & 0 & 0 & 0 \\
-\nu_{13} / E_{1} & -\nu_{23} / E_{2} & -1 / E_{3} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 / G_{23} & 0 & 0 \\
0 & 0 & 0 & 0 & 1 / G_{13} & 0 \\
0 & 0 & 0 & 0 & 0 & 1 / G_{12}
\end{array}\right]\left[\begin{array}{c}
\sigma_{1} \\
\sigma_{2} \\
\sigma_{3} \\
\sigma_{4} \\
\sigma_{5} \\
\sigma_{6}
\end{array}\right]
$$

- Matrix notation:

$$
\begin{array}{llll}
\epsilon_{1}=\epsilon_{11} & \epsilon_{4}=\gamma_{23} & \sigma_{1}=\sigma_{11} & \sigma_{4}=\sigma_{23} \\
\epsilon_{2}=\epsilon_{22} & \epsilon_{5}=\gamma_{13} & \sigma_{2}=\sigma_{22} & \sigma_{5}=\sigma_{13} \\
\epsilon_{3}=\epsilon_{33} & \epsilon_{6}=\gamma_{12} & \sigma_{3}=\sigma_{33} & \sigma_{6}=\sigma_{12}
\end{array}
$$

- In-plane $\left(x_{1}-x_{2}\right): 4$ independent elastic constants:

$$
\begin{array}{llll}
E_{1} & E_{2} & \nu_{12} & G_{12}
\end{array}
$$

and compliance matrix symmetric $\quad \frac{-\nu_{12}}{E_{1}}=\frac{-\nu_{21}}{E_{2}} \quad$ (reciprocal relation)

$$
\left[\text { notation for Poisson's ratio: } \quad \nu_{i j}=\frac{-\epsilon_{j}}{\epsilon_{i}}\right]
$$

Young's modulus in x_{1} direction

Unit cell in x_{1} direction: $2 l \cos \theta$
Unit cell in x_{2} direction: $h+2 l \sin \theta$

$$
\begin{gathered}
\sigma_{1}=\frac{P}{(n+l \sin \theta) b} \\
\epsilon_{1}=\frac{\delta \sin \theta}{l \cos \theta}
\end{gathered}
$$

In-Plane Deformation: Linear Elasticity

M diagram: 2 cantilevers of length $1 / 2$

$$
\begin{aligned}
\delta & =2 \cdot \frac{P \sin \theta(l / 2)^{3}}{3 E_{s} I} \\
& =\frac{2 P l^{3} \sin \theta}{24 E_{s} I}
\end{aligned}
$$

Combining: $\quad E_{1}^{*}=\frac{\sigma_{1}}{\epsilon_{1}}=\frac{P}{(h+l \sin \theta) b} \frac{l \cos \theta}{\delta \sin \theta}$
$=\frac{P}{(h+l \sin \theta) b} \frac{l \cos \theta}{P l^{3} \sin ^{2} \theta} 12 E_{s} \frac{b t^{3}}{12}$
$E_{1}^{*}=E_{s}\left(\frac{t}{l}\right)^{3} \frac{\cos \theta}{(h / l+\sin \theta) \sin ^{2} \theta}=\frac{4}{\sqrt{3}}\left(\frac{t}{l}\right)^{3} E_{s}$
regular
hexagons
$\mathrm{h} / \mathrm{l}=1 \theta=30^{\circ}$
solid relative cell geometry property density

Poisson's ratio for loading in x_{1} direction

$\epsilon_{1}=\frac{\delta \sin \theta}{l \cos \theta} \quad \epsilon_{2}=\frac{\delta \cos \theta}{h+l \sin \theta} \quad$ (lengthens)
$\nu_{12}^{*}=\frac{\delta \cos \theta}{h+l \sin \theta}\left(\frac{l \cos \theta}{\delta \sin \theta}\right)=\frac{\cos ^{2} \theta}{(h / l+\sin \theta) \sin \theta}$

- ν_{12}^{*} depends $\underline{\text { ONLY }}$ on cell geometry $(\mathrm{h} / \mathrm{l}, \theta)$, not on $E_{s}, \mathrm{t} / \mathrm{l}$
- Regular hexagonal cells: $\nu_{12}^{*}=1$
- ν can be negative for $\theta<0$

$$
\text { e.g. } \mathrm{h} / \mathrm{l}=2 \quad \theta=-30^{\circ} \quad \nu_{12}^{*}=\frac{3 / 4}{(3 / 2)(-1 / 2)}=-1
$$

$\begin{array}{lll}\mathbf{E}_{2}^{*} & \nu_{12}^{*} & \mathbf{G}_{12}^{*}\end{array}$

- Can be found in similar way; results in book

Compressive strength (plateau stress)

- Cell collapse by:
(1) elastic buckling

- buckling of vertical struts throughout honeycomb
(2) plastic yielding

- localization of yield
- as deformation progresses, propagation of failure band
(3) brittle crushing

- peaks and valleys correspond to fracture of individual cell walls

Plateau stress: elastic buckling, $\sigma_{e l}^{*}$

- Elastomeric honeycombs - cell collapse by elastic buckling of walls of length h when loaded in x_{2} direction
- No buckling for σ_{1}; bending of inclined walls goes to densification

Euler buckling load

$$
\mathrm{n}=\text { end constraint factor }
$$

$$
P_{c r}=\frac{n^{2} \pi^{2} E_{s} I}{h^{2}}
$$

$$
\int_{\substack{\text { pin-pin } \\ n=1}}^{\substack{\text { fixed-fixed } \\ n=2}}
$$

Elastic Buckling

Figure removed due to copyright restrictions. See Figure 7: L. J. Gibson, M. F. Ashby, et al. "The Mechanics of Two-Dimensional Cellular Materials."

- Here, constraint n depends on stiffness of adjacent inclined members
- Can find elastic line analysis (see appendix if interested)
- Rotational stiffness at ends of column, h, matched to rotational stiffness of inclined members
- Find $\begin{array}{ccc}\mathrm{n} / \mathrm{l}=1 & 1.5 & 2 \\ \mathrm{n}=0.686 & 0.760 & 0.860\end{array}$
and $\left(\sigma_{e l}^{*}\right)_{2}=\frac{P_{c r}}{2 l \cos \theta b}=\frac{n^{2} \pi^{2} E_{s}}{h^{2} 2 l \cos \theta b} \frac{b t^{3}}{12}$

$$
\left(\sigma_{e l}^{*}\right)_{2}=\frac{n^{2} \pi^{2}}{24} E_{s} \frac{(t / l)^{3}}{(h / l)^{2} \cos \theta}
$$

$$
\begin{aligned}
\text { regular hexagons: } & \left(\sigma_{e l}^{*}\right)_{2}=0.22 E_{s}(t / l)^{3} \\
\text { and since } & E_{2}^{*}=4 / \sqrt{3} E_{s}(t / l)^{3}=2.31 E_{s}(t / l)^{3} \\
\text { strain at buckling } & \left(\epsilon_{e l}^{*}\right)_{2}=0.10, \text { for regular hexagons, independent of } E_{s}, \mathrm{t} / \mathrm{l}
\end{aligned}
$$

Plateau stress: plastic yielding, $\sigma_{p l}^{*}$

- Failure by yielding in cell walls
- Yield strength of cell walls $=\sigma_{y s}$
- Plastic hinge forms when cross-section fully yields
- Beam theory - linear elastic $\sigma=\frac{M y}{I}$

- Once stress outer fiber $=\sigma_{y s}$, yielding begins and then progresses through the section, as the load increases

- When section fully yielded (right figure), form plastic "hinge"
- Section rotates like a pin

Plastic Collapse

Figure removed due to copyright restrictions. See Figure 8: L. J. Gibson, M. F. Ashby, et al."The Mechanics of Two-Dimensional Cellular Materials."

- Moment at formation of plastic hinge (plastic moment, M_{p}):
$M_{p}=\left(\sigma_{y s} \frac{b t}{2}\right)\left(\frac{t}{2}\right)=\frac{\sigma_{y s} b t^{2}}{4}$
- Applied moment, from applied stress
$2 M_{\text {app }}-P L \sin \theta=0$
$M_{a p p}=\frac{P l \sin \theta}{2}$
$\sigma_{1}=\frac{P}{(h+l \sin \theta) b}$

- Plastic collapse of honeycomb at $\left(\sigma_{p l}^{*}\right)_{1}$, when $M_{a p p}=M_{p}$
$\left(\sigma_{p l}^{*}\right)_{1}(h+l \sin \theta) b \frac{l \sin \theta}{2}=\sigma_{y s} \frac{\not b t^{2}}{\not 42}$
$\left(\sigma_{p l}^{*}\right)_{1}=\sigma_{y s}\left(\frac{t}{l}\right)^{2} \frac{1}{2(h / l+\sin \theta) \sin \theta}$
regular hexagons: $\left(\sigma_{p l}^{*}\right)_{1}=\frac{2}{3} \sigma_{y s}\left(\frac{t}{l}\right)^{2}$
similarly, $\left(\sigma_{p l}^{*}\right)_{2}=\sigma_{y s}\left(\frac{t}{l}\right)^{2} \frac{1}{2 \cos ^{2} \theta}$
- For thin-walled honeycombs, elastic buckling can precede plastic collapse (for σ_{2})
- Elastic buckling stress $=$ plastic collapse stress $\left(\sigma_{e l}^{*}\right)_{2}=\left(\sigma_{p l}^{*}\right)_{2}$

$$
\begin{aligned}
\frac{n^{2} \pi^{2}}{24} E_{s} \frac{(t / l)^{3}}{(h / l)^{2} \cos \theta} & =\frac{\sigma_{y s}(t / l)^{2}}{2 \cos ^{2} \theta} \\
(t / l)_{\text {critical }} & =\frac{12(h / l)^{2}}{n^{2} \pi^{2} \cos \theta}\left(\frac{\sigma_{y s}}{E_{s}}\right)
\end{aligned}
$$

regular hexagons: $(t / l)_{\text {critical }}=3 \frac{\sigma_{y s}}{E_{s}}$

- E.g. metals $\sigma_{y s} / E_{s} \sim .002 \quad(t / l)_{\text {critical }} \sim 0.6 \%$
- most metal honeycomb denser than this polymer $\sigma_{y s} / E_{s} \sim 3-5 \%(t / l)_{\text {critical }} \sim 10-15 \%$
- low density polymers with yield point may buckle before yield

Plastic stress: brittle crushing, $\left(\sigma_{c r}^{*}\right)_{1}$

- Ceramic honeycombs - fail in brittle manner
- Cell wall bending - stress reaches modulus of rapture - wall fracture loading in x_{1} direction: $P=\sigma_{1}(h+l \sin \theta) b \quad \sigma_{f s}=$ modulus of rupture of cell wall $M_{\text {max. applied }}=\frac{P l \sin \theta}{2}=\frac{\sigma_{1}(h+l \sin \theta) b l \sin \theta}{2}$

Moment at fracture, M_{f}

$$
\begin{aligned}
& M_{f}=\left(\frac{1}{2} \sigma_{f s} b \frac{t}{2}\right)\left(\frac{2}{3} t\right)=\frac{\sigma_{f s} b t^{2}}{6} \\
& \left(\sigma_{c r}^{*}\right)_{1}=\sigma_{f s}\left(\frac{t}{l}\right)^{2} \frac{1}{3(h / l+\sin \theta) \sin \theta}
\end{aligned}
$$

regular hexagons: $\left(\sigma_{c r}^{*}\right)_{1}=\frac{4}{9} \sigma_{f s}\left(\frac{t}{l}\right)^{2}$

Brittle Crushing

Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

Tension

- No elastic buckling
- Plastic plateau stress approx. same in tension and compression (small geometric difference due to deformation)
- Brittle honeycombs: fast fracture

Fracture toughness

Assume: - crack length large relative to cell size (continuum assumption)

- axial forces can be neglected
- cell wall material has constant modulus of rapture, $\sigma_{f s}$

Continuum: crack of length 2 c in a linear elastic solid material normal to a remote tension stress σ_{1} creates a local stress field at the crack tip

$$
\sigma_{\text {local }}=\sigma_{l}=\frac{\sigma_{1} \sqrt{\pi c}}{\sqrt{2 \pi r}}
$$

いい

Fracture Toughness

Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

Honeycomb: cell walls bent - fail when applied moment $=$ fracture moment

$$
\begin{aligned}
& M_{a p p} \propto P l \quad \text { on wall A } \\
& M_{a p p} \propto P l \propto \sigma_{l} l^{2} b \propto \frac{\sigma_{1} \sqrt{c} l^{2} b}{\sqrt{l}} \propto \sigma_{f s} b t^{2} \\
& \quad\left(\sigma_{f}^{*}\right)_{1} \propto \sigma_{f s}\left(\frac{t}{l}\right)^{2} \sqrt{\frac{l}{c}} \\
& K_{I C}^{*}=\sigma_{f}^{*} \sqrt{\pi c}=c \sigma_{f s}\left(\frac{t}{l}\right)^{2} \sqrt{l} \\
& \mathrm{c}=\text { constant }
\end{aligned} \text { depends on cell size, l! } \quad . ~ l
$$

Summary: hexagonal honeycombs, in-plane properties

- Linear elastic moduli: $\begin{array}{lllll}E_{1}^{*} & E_{2}^{*} & \nu_{12}^{*} & G_{12}^{*}\end{array}$
- Plateau stresses $\quad\left(\sigma_{e l}^{*}\right)_{2} \quad$ elastic buckling (compression) $\quad \sigma_{p l}^{*} \quad$ plastic yield $\sigma_{c r}^{*}$ brittle crushing
- Fracture toughness $K_{I C}^{*}$ brittle fracture
(tension)

Honeycombs: In-plane behavior - triangular cells

depth b into page

- Triangulated structures - trusses
- Can analyze as pin-jointed (no moment at joints)
- Forces in members all axial (no bending)
- If joints fixed and include bending, difference $\sim 2 \%$
- Force in each member proportional to P

$\sigma \propto \frac{P}{l b} \quad \epsilon \propto \frac{\delta}{l} \quad \delta \propto \frac{P l}{A E_{s}}$ axial shortening: Hooke's law
$E^{*} \propto \frac{\sigma}{\epsilon} \propto \frac{P}{l b} \frac{l}{\delta} \propto \frac{P}{b} \frac{b t E_{s}}{P l} \propto E_{s}\left(\frac{t}{l}\right)$
$E^{*}=c E_{s}(t / l)$
exact calculation: $E^{*}=1.15 E_{s}(t / l)$ for equilateral triangles

Square and Triangular Honeycombs

Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge
University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

MIT OpenCourseWare
http://ocw.mit.edu
3.054 / 3.36 Cellular Solids: Structure, Properties and Applications

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

