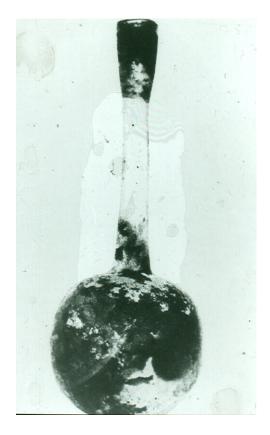
Lecture 6, Cork notes, 3.054

Cork

- Romans used cork for soles of shoes, to seal bottles (also sealed with pitch over cork)
- Benedictine monks in 1600s perfected stopping bottles with clean, unsealed cork
- Cork is the bark of the cork oak tree (Quercus suber)
- Grows in Portugal, Spain, Algeria, California
- All trees have a layer of cork in their bark
- Q. suber is unusual in that cork layer is several cm thick
- Can cut the bark off Q. suber and it regrows
- Cell walls of cork covered in unsaturated fatty acid suberin impervious
- Cork still used to seal bottles, as gaskets, and for soles of shoes


Structure

• Hooke's drawings, SEM: one plane, roughly hexagonal cells; other two, box-like cells, corrugated walls

- Axisymmetric \circ hexagonal cells normal to radial direction $\circ x_1 = \text{tangential}; x_2 = \text{axial}; x_3 = \text{radial}$
- Cell size: $30-40\mu m$ (smaller than most engineering foams)
- Density ~ 170 kg/m^3 , $\rho_s \sim 1150 kg/m^3$, $\rho^*/\rho_s \sim 0.15$ typically

Cork

© Sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Quercus suber

Cork microstructure

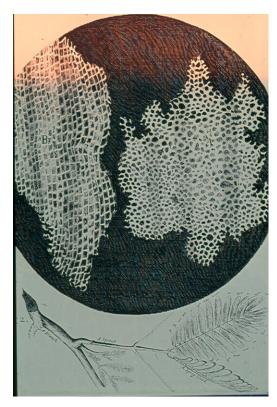


Image is in the public domain. Source Wikimedia Commons.

Hooke, 1665

Figure removed due to copyright restrictions. See Figure 2: Gibston, L. J., K. E. Easterling, et al. "The Structure and Mechanics of Cork." *Proceeding The Royal Society. A* 377, no. 1769 (1981): 99-117.

Cork microstructure

Figure removed due to copyright restrictions. See Figure 5: Gibston, L. J., K. E. Easterling, and M. F. Ashby. "The Structure and Mechanics of Cork." *Proceeding The Royal Society. A* 377, no. 1769 (1981): 99-117.

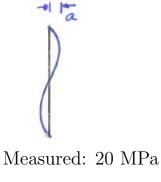
Cork microstructure

Figures removed due to copyright restrictions. See Figures 3, 4, and 6: Gibston, L. J., K. E. Easterling, and M. F. Ashby. "The Structure and Mechanics of Cork." *Proceeding The Royal Society. A* 377, no. 1769 (1981): 99-117.

Mechanical behavior

Modeling: 1-2 directions — honeycomb loaded in plane (tangential/axial)

Model	Measured	
$E_1^* = E_2^* = 0.5 E_s (\rho^* / \rho_s)^3 = 15 \text{ MPa}$	13 MPa	
$G_{12}^* = 0.13 E_s (\rho^* / \rho_s)^3 = 4 \text{ MPa}$	4.3 MPa	
$\nu_{12}^* = \nu_{21}^* = 1$	0.25 - 0.50 (constraint of end membranes)	
$(\sigma_{el}^*)_1 = (\sigma_{el}^*)_2 = 1.5 \text{ MPa}$	0.7 MPa	


Modeling: radial direction (x_3)

- Need to account for corrugations
- If walls straight axial deformation
- Corrugated walls also have bending

$$E_3^* = \frac{0.7 E_s(\rho^*/\rho_s)}{1 + 6(a/t)^2} = 20 \text{ MPa}$$

•
$$\nu_{31}^* = \nu_{32}^* = 0$$
 (corrugations fold up)

$$\nu_{13}^* = \frac{E_1^*}{E_3^*} \,\nu_{31} = 0; \quad \nu_{23}^* = 0$$

Measured: 0-0.1

Stress-strain

Figure removed due to copyright restrictions. See Figure 7: Gibston, L. J., K. E. Easterling, and M. F. Ashby. "The Structure and Mechanics of Cork." *Proceeding The Royal Society. A* 377, no. 1769 (1981): 99-117.

	Calculated	Measured
Moduli		
$E_1^*, E_2^* \; ({ m MN/m}^2)$	15	13 ± 5
$E_3^* (\mathrm{MN/m^2})$	20	20 ± 7
$G_{12}^*, G_{21}^*({ m MN/m}^2)$	4	4.3 ± 1.5
$G_{13}^*, G_{31}^*, G_{23}^*, G_{32}^* (\mathrm{MN/m}^2)$		2.5 ± 1
$v_{12}^* = v_{21}^*$	1.0	0.25^{a} 0.50
$v_{13}^* = v_{31}^* = v_{23}^* = v_{32}^*$	0	0–0.10 ^a
Compressive collapse stress		
$(\sigma_{\rm el}^*)_1, (\sigma_{\rm el}^*)_2 ({\rm MN/m^2})$	1.5	0.7 ± 0.2
$(\sigma_{\rm el}^*)_3 ({\rm MN/m^2})$	1.5	0.8 ± 0.2

 Table 12.2
 Comparison between calculated and measured properties of cork[†]

†Data from Gibson et al. (1981), except for (a) Fortes and Nogueira (1989).

Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

Uses of cork

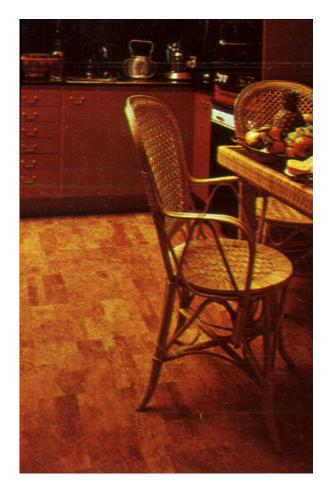
- Stoppers for bottles: excellent seal due to elastic moduli $\nu = 0$, low E, K
 - $\circ~$ Compare with rubber stoppers: low E, but high $K~(\therefore~\upsilon\rightarrow 0.5)$
 - $\circ\,$ Also note orientation of still wine/champagne corks in champagne corks, axis of symmetry aligned with bottle axis
- Gaskets: Cork makes good gaskets for some reason (plus closed cells impervious)
 - Also used as gaskets for musical instruments (woodwinds)
 - $\circ\,$ Sheet cut with prism axis normal to sheet; when sections of instruments are mated, $\nu=0$ sheet gasket doesn't spread and wrinkle
- Floor coverings, shoes: friction
 - Cork has high loss coefficient $\eta = \frac{D}{2\pi u} = 0.1 0.3$
 - When deform, dissipates energy
 - $\circ\,$ Results in high coefficient of friction, even when wet and soapy
 - $\circ\,$ Damping also exploited in tool handles

Stoppers for bottles

Figure removed due to copyright restrictions. See Figure 13: Gibston, L. J., K. E. Easterling, and M. F. Ashby. "The Structure and Mechanics of Cork." *Proceeding The Royal Society. A* 377, no. 1769 (1981): 99-117.

Gaskets

Clarinet



© Sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Figure removed due to copyright restrictions. See Figure 15: Gibston, L. J., K. E. Easterling, and M. F. Ashby. "The Structure and Mechanics of Cork." *Proceeding The Royal Society*. *A* 377, no. 1769 (1981): 99-117.

Cork flooring

Figure removed due to copyright restrictions. See Figure 14: Gibston, L. J., K. E. Easterling, and M. F. Ashby. "The Structure and Mechanics of Cork." *Proceeding The Royal Society. A* 377, no. 1769 (1981): 99-117.

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Insulation

- Small cell size decreases thermal conductivity
- Hermit caves in Portugal lined with cork
- Cigarette tips originally cork

Indentation/Bulletin boards

- Cork densifies when indented; deformation highly localized
- Deformation elastic hole closes up again when pin removed

Figure removed due to copyright restrictions. See Figure 16: Gibston, L. J., K. E. Easterling, and M. F. Ashby. "The Structure and Mechanics of Cork." *Proceeding The Royal Society. A* 377, no. 1769 (1981): 99-117.

Indentation

Figure removed due to copyright restrictions. See Figure 17: Gibston, L. J., K. E. Easterling, and M. F. Ashby. "The Structure and Mechanics of Cork." *Proceeding The Royal Society. A* 377, no. 1769 (1981): 99-117.

3.054 / 3.36 Cellular Solids: Structure, Properties and Applications Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.