Lecture 9, Thermal Notes, 3.054

Thermal Properties of Foams

- Closed cell foams widely used for thermal insulation
- Only materials with lower conductivity are aerogels (tend to be brittle and weak) and vacuum insulation panels
- Low thermal conductivity of foam arises from:
 - o low volume fraction of solid
 - \circ high volume fraction of gas with low λ
 - small cell size suppresses convection and radiation (through repeated absorption and reflection)
- Applications: buildings, refrigerated vehicles, LNE tankers
- Foams also have good thermal shock resistance since coefficient of thermal expansion of foam equals to that of the solid; plus the modulus is much lower ($\epsilon = \alpha \Delta T$ $\sigma = E\alpha \Delta T = \sigma_f$) \Rightarrow used as heat shields
- Ceramic foams used as firebrick ceramic has high T
 - foam low λ low heat loss
 - low heat capacity lowers energy to heat furnace to temperature
 - good thermal shock resistance

Thermal conductivity, λ

• Steady state conduction (T constant with time)

Fourier Law:
$$q = -\lambda \nabla T$$
 $q = \text{hect flux } [J/(m^2/s)]$
1D $q = -\lambda \frac{dT}{dx}$ $\lambda = \text{thermal conductivity } [W/mK]$
 $\nabla T = \text{temperature gradient}$
 $= i\frac{\partial T}{\partial x} + j\frac{\partial T}{\partial y} + k\frac{\partial T}{\partial z}$

• Non-steady heat conduction (T varies with time t)

$$\frac{\partial T}{\partial \tau} = a \frac{\partial^2 T}{\partial x^2}$$

$$a = \text{thermal diffusivity} = \frac{\lambda}{\rho C_p}$$

$$[\text{m}^2/\text{s}]$$

$$\rho = \text{density}$$

$$C_p = \text{specific heat - heat required to}$$

$$\text{raise the temperature of unit mass by 1°K}$$

$$\rho C_p = \text{volumetric heat capacity [J/m^3K]}$$

• Values for λ , a Table 7.1

Material	Thermal conductivity $\lambda(W/m K)$	Thermal diffusivity $a \text{ (m}^2/\text{s)}$
Copper (solid)	384ª	8.8×10^{-5} 8
Aluminium (solid)	230 ^a	8.9×10^{-5} a
Alumina (solid)	25.6 ^a	8.2×10^{-6} a
Glass (solid)	1.1 ^a	4.5×10^{-7} 8
Polyethylene (solid)	0.35^{a}	1.7×10^{-7} a
Polyurethane (solid)	0.25 ^e	
Polystyrene (solid)	0.15 ^a	1.0×10^{-7}
Air	0.025^{a}	-
Carbon dioxide	0.016^{a}	_
Trichlorofluoromethane (CCl ₃ F)	0.008^{a}	-
Oak $(\rho^*/\rho_s = 0.40)$	0.150 ^a	-
White pine $(\rho^*/\rho_s = 0.34)$	0.112 ^a	_
Balsa $(\rho^*/\rho_s = 0.09)$	0.055 ^a	-
$\operatorname{Cork}\left(\rho^*/\rho_{\mathrm{s}}=0.14\right)$	0.045 ^a	_
Polystyrene foam ($\rho^*/\rho_s = 0.025$)	0.040^{b}	1.1×10^{-6}
Polyurethane foam $(\rho^*/\rho_s = 0.02)$	0.025^{b}	9.0×10^{-7}
Polystyrene foam ($\rho^*/\rho_s = 0.029-0.057$)	0.029-0.035 ^d	
Polyisocyanurate foam, (CFC-11) ($\rho^* = 32 \text{ kg/m}^3$)	$0.020^{\rm d}$	
Phenolic foam, (CFC-11, CFC-113) ($\rho^* = 48 \text{ kg/m}^3$)	0.017 ^d	
Glass foam $(\rho^*/\rho_s = 0.05)$	0.050^{d}	
Glass wool $(\rho^*/\rho_s = 0.01)$	0.042^{d}	
Mineral fibre $(\rho^*/\rho_s = 4.8-32 \text{ kg/m}^3)$	0.046 ^d	

Data for thermal conductivity and thermal diffusivity

All values for room temperature.

References

Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. **Table** courtesy of Lorna Gibson and Cambridge University Press.

^aHandbook of Chemistry and Physics, 66th edn (1985–6) Chemical Rubber Co. ed. R. C. Weast.

^bPatten, G. A. and Skochdopole, R. E. (1962) Mod. Plast., 39, 149.

^cSchuetz, M. A. and Glicksman, L. R. (1983) *Proc. SPI 6th International Technical/Marketing Conference*, pp. 332–40.

^dGlicksman, L. R. (1994) Heat transfer in foams, in *Low Density Cellular Plastics* ed. Hilyard, N. C. and Cunningham, A. Chapman and Hall.

Thermal diffusivity, a

• Materials with a high value of a rapidly adjust their temperature to that of surroundings, because they conduct hear rapidly in comparison to their volumetric heat capacity; do not require much energy to reach thermal equilibrium

e.g. Cu
$$a = 112 \times 10^{-6} \text{ m}^2/\text{s}$$

nylon $a = 0.09 \times 10^{-6} \text{ m}^2/\text{s}$
wood $a = 0.082 \times 10^{-6} \text{ m}^2/\text{s}$

Thermal conductivity of a foam, λ^* .

 $\begin{array}{c} \lambda^* - \text{contributions from} - \text{conduction through solid, } \lambda_s^* \\ - \text{conduction through gas, } \lambda_g^* \\ - \text{convection within cells, } \lambda_c^* \\ - \text{radiation through cell walls and across voids, } \lambda_r^* \\ \lambda^* = \lambda_s^* + \lambda_g^* + \lambda_c^* + \lambda_r^* \end{array}$

- Conduction through solid: $\lambda_s^* = \eta \lambda_s(\rho^*/\rho_s)$ $\eta = \text{efficiency factor} \sim 2/3$
- Conduction through gas: $\lambda_g^* = \lambda_g (1 \rho^*/\rho_s)$

For example, 2.5% dense closed-cell polystyrene foam:

$$\lambda^* = 0.040 \text{ W/mK}; \ \lambda_s^* = 0.15 \text{ W/mK}; \ \lambda_g^* = 0.025 \text{ W/mK (air)}$$

$$\lambda_s^* + \lambda_g^* = 2/3 \ (0.15)(0.025) + (0.025)(0.975)$$

$$= 0.003 + 0.024$$

$$= 0.027 \ W/mK$$

- Most of conductivity comes from conduction through gas
- Foams for isolation blown with low λ_g gases
- Problem with aging low λ_g gases diffuse out of foam over time, air diffuses in; λ_g^* \uparrow

Convection within the cell

hot

• Density changes — buoyancy forces

• Also have viscous forces from drag of gas as it moves past cell wall

• Gas rises and falls due to density changes with temperature

Convection is important when Rayleigh number > 1000

$$R_a = \frac{\rho g \beta \, \Delta T_c \, l^3}{\mu a}$$

 $\rho = \text{density of gas}$

 $\Delta T_c = \text{temp. diff. across the}$

 $R_a = \frac{\rho g \beta \Delta T_c l^3}{\mu a}$ g = grav. acceleration $g = \text{grav. acceleration$

for a gas = 1/T (isobaric) μ = dynamic viscosity of gas a =thermal diffusion

Convection

For
$$R_a = 1000$$
 air $p = p_{\text{atm}}$ $T = \text{room temp}$ $\beta = 1/T = 1/300 \, (^{\circ}K^{-1}).$

$$\Delta T_c = 1^{\circ}K \qquad \mu_{\text{air}} = 2 \times 10^{-5} \, \text{Pa·s} \qquad \rho_{\text{air}} = 1.2 \, \text{kg/m}^3$$

$$a_{\text{air}} = 2.0 \times 10^{-5} m^2/s$$

$$\Rightarrow l = 20 \, \text{mm}$$

- Convection important if cell size > 20 mm
- Most foams: cell size $< 1 \text{ mm} \Rightarrow \text{convection negligible}$

Radiation

• Hect flux passing by radiation, q_r^0 , from surface at temperature T_1 , to one at a lower temperature T_0 , with a vacuum between them, is:

$$q_r^0 = \beta_1 \, \sigma(T_1^4 - T_0^4)$$
 Stefan's law

$$\sigma = \text{Stefan's constant} = 5.67 \times 10^{-8} \text{ W/m}^2 \text{ K}^4$$

 $\beta_1 = \text{constant}$ (< 1) describing emissivity of the surfaces (emitted radiant flux per unit area of sample relative to black body radiator at same temperature and conditions; black body absorbs all energy; black body emissivity =1)

Radiation

- If put foam between two surfaces, heat flux is reduced, since radiation is absorbed by the solid and reflected by cell walls
- Attenuation $q_r = q_r^0 \exp(-K^*t^*)$ Beer's law $K^* = \text{extinction coefficient for foam}$ $t^* = \text{thickness of foam}$
- For optically thin walls and struts $(t < 10\mu m)$ (transparent to radiation)

$$K^* = (\rho^*/\rho_s) K_s$$

• Heat flux by radiation then:

$$q_r = \lambda_r^* \, \frac{dT}{dx}$$

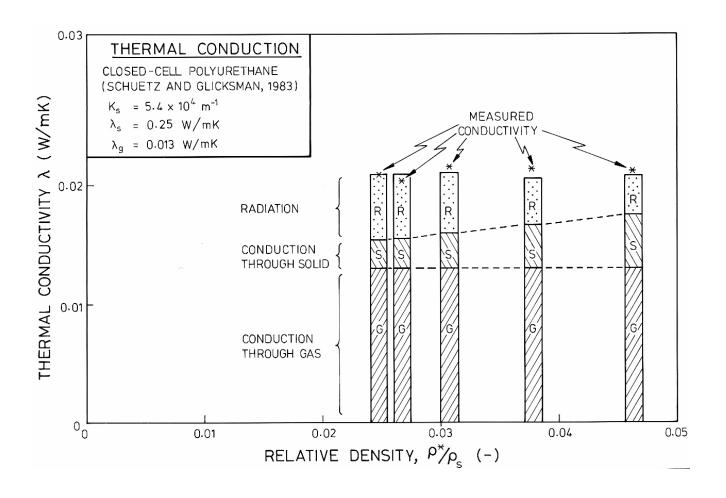
$$q_r = \beta_1 \, \sigma(T_1^4 - T_0^4) \, \exp\left[-(\rho^*/\rho_s)K_s \, t^*\right] = \lambda_r^* \, \frac{dT}{dx}$$

• Obtain λ_r using some approximations

Approximations:

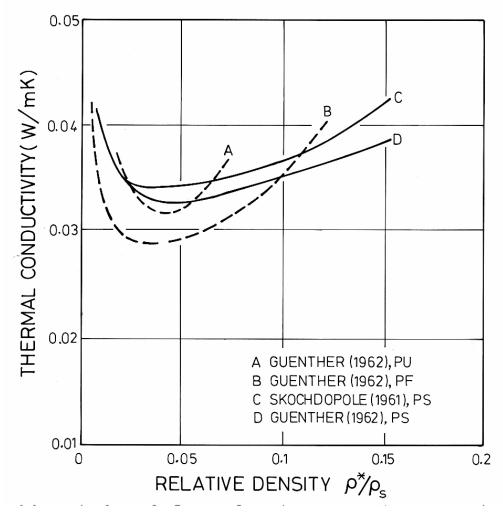
$$\frac{dT}{dx} \approx \frac{T_1 - T_0}{t^*} = \frac{\Delta T}{t^*}$$

$$T_1^4 - T_0^4 \approx 4 \Delta T \, \bar{T}^3 \qquad \bar{T} = \left(\frac{T_1 - T_0}{2}\right)$$

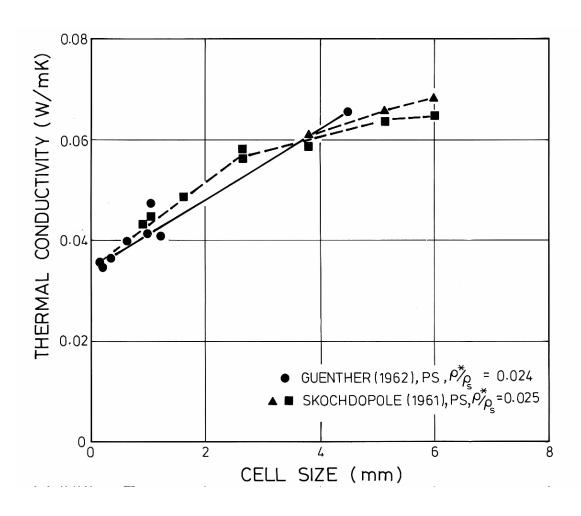

$$q_r = \beta_1 \sigma 4 \Delta T \, \bar{T}^3 \exp\left[-(\rho^*/\rho_s)K_s \, t^*\right] = \lambda_r^* \, \frac{\Delta T}{dx}$$

$$\lambda_r^* = 4\beta_1 \sigma \bar{T}^3 \, t^* \exp\left[-(\rho^*/\rho_s)K_s \, t^*\right]$$
as $\rho^*/\rho_s \downarrow \lambda_r^* \uparrow$

Thermal conductivity


- Relative contributions of $\lambda_s^*,\,\lambda_g^*,\,\lambda_r^*$ shown in Fig. 7.1
 - \circ largest contribution λ_g^*
- λ^* plotted against relative density Fig. 7.2
 - \circ minimum between ρ^*/ρ_s of 0.03 and 0.07
 - $\circ\,$ at which point λ^* only slightly larger than λ_s^*
 - \circ at low ρ^*/ρ_s , λ^* increases increasing transparency to radiation (also, walls may rupture)
 - $\circ\,$ tradeoff: as ρ^*/ρ_s goes down, λ_s^* goes down, but λ_r^* goes up

Thermal Conductivity


Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

Cond. Vs. Relative Density

Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

Cond. vs. Cell Size

Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

 λ^* plotted against cell size Fig. 7.3

- λ^* increases with cell size
- Radiation reflected less often

Note: aerogels

- Pore size < 100nm
- Mean free path of air at ambient pressure = 68 nm \rightarrow average distance molecules move before collision with another molecule
- Aerogels pore size < mean free path of air reduced conduction through gas

Specific hear C_p

• Specific heat — energy required to raise temperature of unit mass by unit temperature

$$C_p^* = C_{\rm ps}$$
 [J/kg· K]

Thermal expansion coefficient

 $\alpha^* = \alpha_s$ (consider foam as framework)

(but if closed-cell foam cooled dramatically — gas can freeze, collapsing the cells; or if heated — gas expands, increasing the internal pressure and strains)

Thermal shock resistance

- If material subjected to sudden change in surface temperature induces thermal stresses at surface, plus cracking and spalling
- Consider material at T_1 dropped into water at T_2 $(T_1 > T_2)$
 - \circ Surface temperature drops to T_2 , contracting surface layers
 - \circ Thermal strain $\epsilon_T = \alpha \Delta T$
- If surface bonded to underlying block of material constrained to original dimensions

$$\sigma = \frac{E \alpha \Delta T}{1 - \nabla} \quad \text{in the surface}$$

• Cracking/spalling when $\sigma = \sigma_f$

$$\Delta T = \sigma_f \frac{1-\nu}{E\alpha} = \text{critical } \Delta T \text{ to just cause cracking}$$

• For foam: (open cells)

$$\Delta T_c^* = \frac{0.2 \,\sigma_{\rm fs}(\rho^*/\rho_s)^{3/2} (1 - \nu^*)}{E_s \,(\rho^*/\rho_s)^2 \alpha_s} = \frac{0.2}{(\rho^*/\rho_s)^{1/2}} \,\frac{\sigma_{\rm fs}(1 - \nu)}{E_s \alpha_s} = \frac{0.2}{(\rho^*/\rho_s)^{1/2}} \,\Delta T_{cs}$$

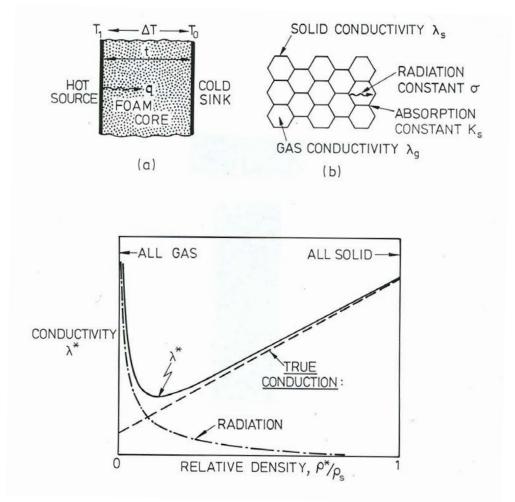
 \bullet As foam density goes down, ΔT_c^* goes up $\,$ firebrick - porous ceramic

Case study: optimization of foam density for thermal insulation

- There is an optimal foam density for a given thermal insulation problem
- Already saw λ^* has a minimum as a $f(\rho^*/\rho_s)$
- ullet Typically, have a constraint on the foam thickness, t^* , $t^* = \text{constant}$

$$\lambda^* = \frac{2}{3} (\rho^*/\rho_s) \lambda_s + (1 - \rho^*/\rho_s) \lambda_g^* + 4\beta_1 \sigma \bar{T}^3 t^* \exp[-K_s(\rho^*/\rho_s) t^*]$$

• What is optimum ρ^*/ρ_s for a given t^* ?


$$\frac{d\lambda^*}{d(\rho^*/\rho_s)} = 0 \implies (\rho^*/\rho_s)_{\text{opt}} = \frac{1}{K_s t^*} \ln \left[\frac{4K_s \beta_1 \sigma \bar{T}^3 t^{*2}}{\frac{2}{3} \lambda_s - \lambda_g} \right]$$

- \bullet As given thickness t^* increases, $(\rho^*/\rho_s)_{\rm opt}$ decreases
- As \bar{T} increases, $(\rho^*/\rho_s)_{\rm opt}$ increases

e.g. coffee cup
$$t^* = 3 \text{mm}$$
 $(\rho^*/\rho_s)_{\text{opt}} = 0.08$ refrigerator $t^* = 50 \text{mm}$ $(\rho^*/\rho_s)_{\text{opt}} = 0.02$

(see PP slide Table 7.3 for data used in calculations)

Case Study: Optimization of Relative Density

Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. Figures courtesy of Lorna Gibson and Cambridge University Press.

Case Study: Optimum Relative Density

Extinction coefficient of solid polymer, K_s	$5.67 \times 10^4 \mathrm{m}^{-1}$	
Emissivity factor, β_1	0.5	
Conductivity of solid polymer, λ_s	$0.22\mathrm{W/m}\mathrm{K}$	
Conductivity of gas, $\lambda_{\rm g}$	$0.02\mathrm{W/m}\mathrm{K}$	
Mean temperature, \bar{T}	300°K	
Stefan's constant, σ	$5.67 \times 10^{-8} \text{W/m}^2 \text{K}$	

Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. **Table** courtesy of Lorna Gibson and Cambridge University Press.

Case study: insulation for refrigerators

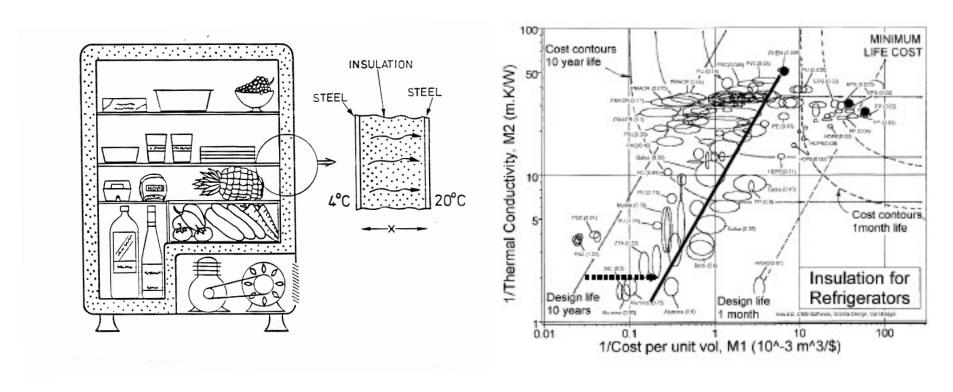
- Insulation reduces energy cost, but has a cost itself
- Total cost is the cost of insulation plus the cost of energy lost by hear transfer through walls
- Objective function: minimize total cost
- given: x=thickness of insulation $C_M=$ cost of insulation/mass $\Delta T=$ temp. diff. across insulation $C_E=$ cost of energy / joule $C_T=$ total cost/area

$$C_T = x \, \rho^* C_M + \lambda \, \frac{\Delta T}{x} \, t_l C_E \qquad \text{(heat flux } q = \lambda \frac{\Delta T}{x} \, \frac{\mathrm{J}}{\mathrm{m}^2 \mathrm{s}}\text{)}$$
Define:
$$M_1 = \frac{1}{\rho^* C_M} \qquad M_2 = \frac{1}{\lambda}$$

$$\frac{C_T}{x} = \frac{1}{M_1} + \left[\frac{\Delta T}{x^2} t_l C_E\right] \frac{1}{M_2}$$

• The terms are equal when:

$$M_2 = \underbrace{\left[\frac{\Delta T}{x^2} t_l C_E\right]}_{\text{coupling constant}} M_1$$


- Family of parallel straight lines of constant value $\frac{\Delta T}{x^2} t_l C_E$
- Fig. 13.11 $\Delta T = 20^{\circ}$ x = 10 mm $C_E = 0.01/\mu \text{J}$

Two lines for $t_2 = 10$ years and $t_l = 1$ month (note error in book $t_l = 10$ years line should be moved over)

- Also plotted a set of curved contours plots of C_T/x :
 - \circ As move up and to the right of plot, the value of C_T/x decreases

• For
$$t_l = 10 \text{ years} \Rightarrow \text{ phenolic foam } \rho^* = 0.035 \text{ Mg/m}^3$$

For $t_l = 1 \text{ month } \Rightarrow \text{ EPS } \rho^* = 0.02 \text{ Mg/m}^3$
PP $\rho^* = 0.02 \text{ Mg/m}^3$

Case Study: Insulation for Refrigerators

Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. Figures courtesy of Lorna Gibson and Cambridge University Press.

MIT OpenCourseWare http://ocw.mit.edu

 $3.054\ /\ 3.36$ Cellular Solids: Structure, Properties and Applications Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.