Problem 5.4

Define points on 20C line
> with (geometry) : point (p1_20,44e6/(20+273), ln(1e-4)):
$>$ point (p2_20,53.2e6/(20+273), ln(1e-2)):
get slope of line and multiply by 2 R to get activation volume
> Digits:=4:'V (m^3/mol)'= 2*8.314*slope (p2_20,p1_20);

$$
\mathrm{V}\left(\frac{m^{3}}{m o l}\right)=.002440
$$

Compute activation energy by horizontal difference between 20C and -60C lines
> eq:=(V/2)*((69e6/(-60+273)) -
(44e6/(20+273)))=Delta[H]*(1/(-60+273) - 1/(20+273));

$$
e q:=211.9=\frac{80}{62409} \Delta_{H}
$$

> 'Delta[H] (kJ/mol) ' = solve(eq,Delta[H])/1000;

$$
\Delta_{H}\left(\frac{\mathrm{~kJ}}{\mathrm{~mol}}\right)=165.3
$$

