Prob. 6.2

What is the maximum fiber volume fraction V_{f} that could be obtained in a unidirectionally reinforced with optimal fiber packing?

Consider a triangular area inscribed on a close-packed section as shown. The enclosed fiber area includes half of the three circles located on the midsides, and one-sixth of the three circles at the vertices. The area of fibers in the triangle is then

$$
A[f]:=\left(3 *(1 / 2)+3^{*}(1 / 6)\right) * P^{*} * r^{\wedge} 2 ;
$$

$$
A_{f}:=2 \pi r^{2}
$$

The area of the equilaterial triangle, with sides of $4 r$, is

$$
\mathrm{A}[\mathrm{t}]:=4 * \mathrm{r}^{\wedge} 2 * \operatorname{sqrt}(3) ;
$$

$$
A_{t}:=4 r^{2} \sqrt{3}
$$

Packing density is then
Digits:=4;p:=evalf(A[f]/A[t]);

$$
p:=.9072
$$

