

Juejun (JJ) Hu

- Mechanical properties
 - **?** Brittle, fragile, stiff
- Optical properties
 - Transparent, translucent

"A room-temperature malleable glass" (As₆₀Se₄₀)

Video courtesy of IRradiance Glass Inc.

- **Electrical properties**
 - Insulating
- Chemical properties
 - 7 Durable, inert

? Man-made

- **Obsidian** (volcanic activity)
- Tektite (meteorite impact)
- Fulgurite (lightning strike)

Lithium-Ion Conducting Glass-Ceramics (LICGC[™])

LICGC[™] is a lithium ion conducting glass ceramic that was developed to serve as a true solid state electrolyte or separator in next generation lithium batteries and other electrochemical devices.

The unique properties of LICGC[™] make it the enabling component in advanced lithium metal cells.

Image © Ohara Corporation. All rights reserved. This content is excluded from our Creative Commons license. For more

information, see http://ocw.mit.edu/help/fag-fair-use/.

NASA: Galileo Spacecraft found amorphous ice on moons of Jupiter

Amorphous materials are ubiquitous

© unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

- Glass cover
- Camera lens
- TFT display
- Dielectrics
- Circuit packaging
- ? Metallic glass case
- ? Phase change memory
- ? Solid state battery

and many more...

A metastable solid with no long-range atomic order

A metastable solid with no long-range atomic order

Consider a fictitious A_2O_3 2-D compound:

- Short-range order is preserved (AO₃ triangles)
- Long-range order is disrupted by changing bond angle (mainly) and bond length
- Structure lacks symmetry and is usually isotropic

Zachariasen's Random Network Theory (1932)

Glass consists of a continuous atomic network

Figure of Microphotometer records of X-ray diffraction patterns removed due to copyright restrictions. See Figure 3: Warren, B.E., and J. Biscce. "The Structure of Silica Glass by X-ray Diffraction Studies." *J. Am. Cer. Soc.* 21 (1938): 49-54.

- Absence of small angle scattering
 - Continuous structure without micro-voids
- Broad diffraction peak
 - Size of ordered region < 8 Å (Scherrer equation)
 - Unit cell size of cristobalite:
 7.1 Å

Glass is NOT a collection of extremely small crystals

J. Am. Cer. Soc. 21, 49-54 (1938).

Random network model of silica glass (SiO₂)

Image of vitreous silica model removed due to copyright restrictions. See Getty Images.

Nature **212**, 1353 (1966). Now in the Science Museum, London

Excellent agreement between XRD and ball-and-stick model constructed according to the random network model

Direct atomic imaging of bilayer silica glass

Direct atomic imaging of bilayer silica glass

Figure removed due to copyright restrictions. See Figure 1: Huang, P.Y., et al. "Direct Imaging of a Two-Dimensional Silica Glass on Graphene." *Nano Lett.* 12 (2012): 1081-1086.

Sci. Rep. 3, 3482 (2013).

Nano Lett. 12, 1081-1086 (2012).

 Article: Anne Ju "Shattering records: Thinnest glass in Guinness book." Cornell Chronicle. September 12, 2013.

- Supercooled liquid transforms to the glassy state when crystallization is kinetically suppressed
- Extensive variables remain continuous during glass transition
- The glassy state is different from supercooled liquid

 \checkmark T_f: Fictive temperature

- Glasses obtained at different cooling rates have different structures
- With increasing cooling rate:

♦ $V_1 < V_2 < V_3$

Free volume increases

♦ $H_1 < H_2 < H_3$

Configurational entropy increases

•
$$T_{f,1} < T_{f,2} < T_{f,3}$$

The heating curve never retraces the cooling curve during glass transition due to structural relaxation

A metastable solid with no long-range atomic order

A metastable solid with no long-range atomic order

Underlying graph © International Union of Crystallography. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Quantitative description of glass structure

- Structural descriptions of amorphous materials are always statistical in nature
- Pair distribution function (PDF): g(r)
 - Consider an amorphous material with an average number density of atom given by:

 $\rho = n/V$ *n* : number of atoms *V* : material volume

- □ The number density of atoms at a distance *r* from an origin atom is given by $\rho \cdot g(r)$
- $\Box \text{ When } r \rightarrow 0, g \rightarrow 0$
- \square When $r \rightarrow \infty$, $g \rightarrow 1$

PDFs of ideal (hard sphere) crystals vs. glasses

Quantitative description of glass structure

• Pair correlation function h(r)

 $\square \quad h(r) = g(r) - 1$

Radial distribution function (RDF): J(r)

$$\Box \quad J(r) = 4\pi r^2 \rho \cdot g(r)$$

- □ J(r)dr gives the number of atoms located between r and r+ dr away from the origin atom
- □ The area under the RDF curve gives the number of atoms
- Reduced radial distribution function (rRDF): G(r)

$$\Box \quad G(r) = 4\pi r^2 \rho \cdot [g(r) - 1] = 4\pi r^2 \rho \cdot h(r)$$

Summary

- The amorphous state is metastable
- Amorphous structures possess short-range order and lack long-range order
- Amorphous materials can be obtained from liquid by melt quench
- Melt quench is a continuous, irreversible process involving phase change
- Glass properties depend on their thermal history

After-class reading list

- Fundamentals of Inorganic Glasses
 - Ch. 1 & 2
- Introduction to Glass Science and Technology
 - 🗆 Ch. 1

MIT OpenCourseWare http://ocw.mit.edu

3.071 Amorphous Materials Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.