

Juejun (JJ) Hu

After-class reading list

- Fundamentals of Inorganic Glasses
 - 🗆 Ch. 19
- Introduction to Glass Science and Technology
 - Ch. 10
- 3.024 wave optics

What's so special about 2225 ?

Refraction

Transparency

Image of underwater optical fiber network removed due to copyright restrictions. See The Fiber Optic Association, Inc. website.

Image courtesy of Josep Renalias on Wikimedia Commons. License: CC BY-SA. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Palau de la Musica Catalana, Barcelona

Maxwell Equations ('macroscopic' differential form)

- Gauss's Law: $\nabla \cdot D = \rho_f$
- Gauss's Law for magnetism: $\nabla \cdot B = 0$
- Faraday's Law: $\nabla \times E = -\frac{\partial B}{\partial t}$
 - Ampere's Law: $\nabla \times H = J_f + \frac{\partial D}{\partial t}$

James C. Maxwell (1831-1879)

Image is in the public domain. Source: Wikimedia Commons

Н	Magnetic field	В	Magnetic induction
E	Electric field	D	Electric displacement
J_{f}	Free current density	$ ho_{f}$	Free charge density

Constitutive relations in amorphous materials

General form for non-bianisotropic media:

 $D = \varepsilon_0 E + P \qquad B = \mu_0 H + \mu_0 M$

Most amorphous materials are isotropic

- \Box E and D (or B and H) always align in the same direction
- □ In most non-magnetic glasses, μ_r is close to 1 ($\mu = \mu_0$)

$$P = \varepsilon_0 \chi E$$
 $M = \chi_m H$ Linear media

$$D = \varepsilon_0 (1 + \chi) E = \varepsilon_0 \varepsilon_r E = \varepsilon E$$

$$B = \mu_0 (1 + \chi_m) H = \mu_0 \mu_r H = \mu H \sim \mu_0 H$$

Non-magnetic media

 $n = \sqrt{\mu_r \varepsilon_r} \sim \sqrt{\varepsilon_r} = \sqrt{1 + \chi}$ Non-magnetic media

Refractive index of glass: general trends

- Addition of heavy elements increases index
 - Lead-containing glasses
- Addition of alkali oxides increases index
 - NBOs have larger polarizability than BOs
- Fictive temperature (density) dependence

Rawson, Properties and Applications of Glasses (1980)

Kramers-Kronig (K-K) relation

Refractive index of glasses

Wavelength/frequency dependent (Lorentz oscillators)

Chromatic dispersion of glasses

Prism dispersive spectrometer

© PASCO Scientific. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Chromatic aberration

Chromatic dispersion of glasses

Abbe number (V-number):
$$V_D = (n_D - 1)/(n_F - n_C)$$

□ D, F and C spectral lines: 589.3 nm, 486.1 nm and 656.3 nm

Chromatic dispersion of glasses

• Abbe number (V-number): $V_D = (n_D - 1)/(n_F - n_C)$

Crown glass ("K")

- Soda-lime silicates
- Low index
- Low dispersion

Flint glass ("F")

- Lead glasses
- High index
- High dispersion

Image courtesy of Bob Mellish on Wikimedia Commons. License: CC BY-SA. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Diagram of Zeiss Hasselblad Sonnar Superachromat lens removed due to copyright restrictions.

Ŋ.

Optical loss in silica glass

$$P(dB) = 10 \cdot \log_{10} \left(\frac{I}{I_0} \right) \qquad \frac{I}{I_0} = \exp(-\alpha d) \implies$$

 $10 \cdot \log_{10}(0.5) \sim 3.0 \text{ dB}$ 1 dB/cm = 0.23 cm⁻¹

The Nobel Prize in Physics 2009

Charles Kuen Kao

Photo © U. Montana. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Prize motivation:

"for groundbreaking achievements concerning the transmission of light in fibers for optical communication"

Optical loss / attenuation mechanisms

Semiconductor	Soda-lime glass	Transparent	Fiber-optic
optoelectronics	in the infrared	ceramics	glasses
Electronic absorption	Phonon absorption	Defect scattering	Rayleigh scattering
Absorption	Absorption	Scattering by	Scattering due to
induced by	resulting from	crystalline grains,	density, structure
electronic	atomic / ionic	grain boundaries,	or composition
transitions	vibrations	micro-voids, etc.	fluctuations

Optical loss mechanisms in glasses

- Extrinsic absorption (impurities or dopants)
 - Transition metal or rare earth ions
 - □ Vibrational absorption
- Intrinsic attenuation
 - Band-to-band transitions
 - □ Urbach tail absorption
 - Mid-gap defect state absorption
 - □ Free carrier absorption (FCA)
 - Phonon (vibrational) absorption
 - Rayleigh scattering
 - Density fluctuation
 - Structural moieties

Color codes: Atomic/ionic absorption Electronic absorption Scattering

- 1. Band-to-band transition
- 2. Urbach bandtail absorption
- 3. Defect state absorption
- 4. Free carrier absorption

- 1. Band-to-band transition
- 2. Urbach bandtail absorption

$$\alpha = \alpha_U \exp\left[\left(\hbar\omega - E_g\right)/E_U\right]$$

- 1. Band-to-band transition
- 2. Urbach bandtail absorption

$$\alpha = \alpha_U \exp\left[\left(\hbar\omega - E_g\right)/E_U\right]$$

- 1. Band-to-band transition
- 2. Urbach bandtail absorption
- 3. Defect state absorption

- 1. Band-to-band transition
- 2. Urbach bandtail absorption
- 3. Defect state absorption
- 4. Free carrier absorption

Absorption coefficient (cm⁻¹)

- Band-to-band: > 10³
- Bandtail and defect states: 1 – 10³
- FCA: generally weak in amorphous solids

Vibrational absorption

Compound	Primary		
or functional	absorption		
group	bands (µm)		
O-H	2.92		
S-H	4.01, 3.65, 3.11, 2.05		
Ge-H	4.95		
P-H	4.35		
As-H	5.02		
Si-O	9.1 – 9.6		
Ge-O	12.8		
H ₂ O	6.3, 2.8		

J. Optoelectron. Adv. Mater. 3, 341 (2001)

Sources of Rayleigh scattering in glass

Local density fluctuation

$$\alpha = A_1 / \lambda^4 \qquad A_1 = \frac{8}{3} \pi^3 n^8 p^2 \beta k_B T_f$$

- \square *p* : photoelastic constant
- $\square \beta$: isothermal compressibility
- Concentration scattering
 - Local composition fluctuation in multi-component glasses

Ann. Physik **33**, 1275 (1910); Ann. Physik **25**, 205 (1908); J. Appl. Phys. **55**, 4052 (1984).

Einstein-Smoluchowski scattering: density fluctuation of atmosphere

Image courtesy of RoyalShot.com on photovaco. License: CC BY.

Intrinsic optical loss spectrum in glass

Total loss: $\alpha_t = (A_1 + A_2)/\lambda^4 + B_1 \exp(B_2/\lambda) + C_1 \exp(-C_2/\lambda)$

Total optical loss in glasses

Transparent glass coloring: absorption

Transition metal or rare earth ion additives

Transition metal ions			Rare earth ions		
Configuration	Ion	Color	Configuration	Ion	Color
d^0	Ti ⁴⁺	Colorless	4f ⁰	La ³⁺	None
	V ⁵⁺	Faint yellow	U U	Ce ⁴⁺	Weak yellow
		to colorless	$4f^{1}$	Ce ³⁺	Weak yellow
	Cr ⁶⁺	Faint yellow	$4f^2$	Pr ³⁺	Green
		to colorless	$4f^4$	Nd ³⁺	Violet-pink
d^1	Ti ³⁺	Violet-purple	$4f^4$	Pm ³⁺	None
	V ^{4 +}	Blue	$4f^5$	Sm ³⁺	None
	Mn ⁶⁺	Colorless	$4f^6$	Sm ²⁺	Green
d^2	V ³⁺	Yellow-green	C C	Eu ³⁺	None
d^3	Cr ³⁺	Green	$4f^{7}$	Eu ²⁺	Brown
d^4	Cr ²⁺	Faint blue	C C	Gd ³⁺	None
	Mn ³⁺	Purple	$4f^8$	Tb ^{3 +}	None
d^5	Mn ²⁺	Light yellow	$4f^9$	Dy ³⁺	None
	Fe ³⁺	Faint yellow	$4f^{10}$	Dy^{2+}	Brown
d ⁶	Fe ²⁺	Blue-green	0	Ho ³⁺	Yellow
	Co ³⁺	Faint yellow	$4f^{11}$	Er ³⁺	Weak pink
d^7	Co ²⁺	Blue-pink	f^{12}	Tm ³⁺	None
d^8	Ni ²⁺	Brown-purple	$4f^{13}$	Tm ²⁺	None
d ⁹	Cu ²⁺	Blue-green	U	Yb ³⁺	None
<i>d</i> ¹⁰	Cu ⁺	Colorless	$4f^{14}$	Lu ³⁺	None

Image © Vitraž. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Green tint due to Fe²⁺ ions

Glass decolorization:

Examples of color glasses with ion additives

Manganese amethyst

Various images © unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Transparent glass coloring: scattering

- Precipitation of small crystals or metal nanoparticles
 - Rayleigh scattering by nanocrystals
 - Plasmon resonance of metal nanoparticles

Opalescent glass: nanocrystals

Cryolite glass image © unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Lycurgus Cup: Au-Ag nanoparticles

Images of the Lycurgus Cup courtesy of The British Museum.

Striking colors

- Coloring of glass via heat treatment
- Example: gold-ruby striking

Photochromic and electrochromic glasses

- Optical or electrical control of redox state of ions
- Carrier injection into transparent conductors to modulate FCA

'Smart glass' diagram © Heliotrope Technologies. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Photochromic and electrochromic glasses

- Optical or electrical control of redox state of ions
- Carrier injection into transparent conductors to modulate FCA

Photo of heat- and light-blocking film on glass © Anna Llordés, Lawrence Berkeley National Lab. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Nature 500, 323 (2013)

Summary

- Refraction
 - □ Microscopic origin of refraction and chromatic dispersion
 - Composition dependence of refractive indices
 - □ Abbe number
- Attenuation
 - Optical loss mechanisms in general materials
 - Optical loss mechanisms in glasses
 - Electronic, vibrational, and scattering losses
- Coloring
 - Ion additives
 - Scattering by nanoparticles

3.071 Amorphous Materials Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.