

Juejun (JJ) Hu

After-class reading list

- 3.012 X-ray diffraction
- 3.014 X-ray diffraction, Raman spectroscopy, and calorimetry

	Technique	Information
Structure	X-ray/electron/ neutron diffraction	Crystallinity, pair distribution function, medium range order
	X-ray absorption spectroscopy (XAS)	Local structure, electronic state
	Raman spectroscopy	Phonon spectra, structural clusters
	Nuclear magnetic resonance (NMR)	Local atomic configurations
Glass chemistry	Atomic emission spectroscopy (AES)	Elemental composition
	Energy-dispersive X-ray spectroscopy (EDX)	Elemental composition
	Infrared spectroscopy	Chemical bonding, impurity concentration, optical absorption
	X-ray photoelectron spectroscopy (XPS)	Valence state of constituents, electron density of states

	Technique	Information
Thermal analysis	Differential thermal analysis (DTA)	Glass transition temperature (T _g), crystallization (T _x)
	Differential scanning calorimetry (DSC)	Glass transition temperature (T _g), crystallization (T _x)
	Thermogravimetric analysis (TGA)	Chemical decomposition
	Thermomechanical analysis (TMA)	Thermal expansion, softening point, glass transition (T _g)
Electrical properties	Temperature-dependent electrical conductivity measurement	Conduction mechanism, activation energy, density of states at Fermi level (for VRH)
	Impedance spectroscopy (AC conductivity)	Conductivity, dielectric constant
	Electron paramagnetic resonance (EPR)	Defects (e.g. dangling bonds)

	Technique	Information
Mechanical and rheological behavior	Indentation	Hardness
	Ultrasonic wave propagation	Elastic modulus
	Fracture toughness test	Fracture toughness
	3/4-point bending test	Elastic modulus, flexural stress
	Viscometry	Viscosity
Optical properties	UV-Vis spectroscopy	Optical attenuation & absorption (100 dB/cm or higher), Tauc gap
	Ellipsometry	Refractive index dispersion
	Prism coupling	Refractive index (bulk and thin film), optical attenuation
	Optical fiber/waveguide transmission	Optical attenuation (< 100 dB/cm)
	Photoluminescence	Defect states

Diffraction techniques

Three dimensional visualization of diffraction intensities removed due to copyright restrictions. See Figure 2: "Serial Femtosecond Crystallography." CFEL Science, DESY. Full 3-D x-ray structure factors of Photosystem I, a protein complex

> Image courtesy: Thomas White, CFEL

X-ray diffraction (XRD)

Figure of XRD line scan of amorphous and annealed Metglas foils removed due to copyright restrictions. See Figure 1: Li, M. et al. "Giant Magnetoelectric Effect in Self-biased Laminates Under Zero Magnetic Field." *Appl. Phys. Lett.* 102, no. 082404 (2013): 1-3.

Crystals:

- Strong scattering
- Localized, intense peaks

Glass:

- Weak scattering
- Broad scattering background across the entire reciprocal space

X-ray diffraction in solids

 r_m : position vector of atom m

Assumptions:

- Approximate incident and diffracted X-ray as monochromatic plane waves
- Elastic scattering: wavelength of X-ray remains the same after scattering
- Neglect X-ray attenuation in the solid sample

X-ray diffraction by a single atom *m*

E : field amplitude of incident X-ray k_i : wave vector of incident X-ray k_s : wave vector of scattered X-ray f_m : scattering factor of atom *m* $\mathbf{Q} = k_s - k_i$: scattering vector Complex amplitude of incident wave:

$$\boldsymbol{E}_{i}(\boldsymbol{r}) = \boldsymbol{E} \exp(i\boldsymbol{k}_{i}\cdot\boldsymbol{r})$$

Field amplitude of the incident wave at r_m:

$$\boldsymbol{E}_{i}\left(\boldsymbol{r}_{m}\right) = \boldsymbol{E}\exp\left(i\boldsymbol{k}_{i}\cdot\boldsymbol{r}_{m}\right)$$

Complex amplitude of wave scattered by atom *m*:

$$E_{s}(\mathbf{r}) \propto E \exp(i\mathbf{k}_{i} \cdot \mathbf{r}_{m})$$

$$\times \exp[i\mathbf{k}_{s} \cdot (\mathbf{r} - \mathbf{r}_{m})]$$

$$= f_{m} \exp(-i\mathbf{Q} \cdot \mathbf{r}_{m})$$

X-ray diffraction in solids

- $S(\mathbf{Q})$: (static) structure factor N: total number of atoms in the
- sample

 Total scattered amplitude from the sample :

$$\sum_{m} f_{m} \exp\left(-i\mathbf{Q}\cdot\mathbf{r}_{m}\right)$$

Total scattered intensity:

$$I = \left| \sum_{m} f_{m} \exp(-i\mathbf{Q} \cdot \mathbf{r}_{m}) \right|^{2}$$
$$= \sum_{m} f_{m} \exp(-i\mathbf{Q} \cdot \mathbf{r}_{m})$$
$$\times \sum_{n} f_{n}^{*} \exp(i\mathbf{Q} \cdot \mathbf{r}_{n})$$
$$= S(\mathbf{Q}) \times N\langle f_{m} \rangle^{2}$$

X-ray diffraction in crystals

 The condition for a Bragg peak to appear is:

 $2d\sin\theta = \lambda$

or: $\mathbf{Q} = k_{s} - k_{i} = G_{hkl}$

The Bragg peak intensity scales with:

$$\left|\sum_{j} f_{j} e^{-i\mathbf{Q}\cdot\mathbf{r}_{j}}\right|^{2}$$

where the sum is over all atoms in a unit cell

Quantitative description of glass structure

- Structural descriptions of amorphous materials are always statistical in nature
- Pair distribution function (PDF): g(r)
 - Consider an amorphous material with an average number density of atom given by:

 $\rho = N/V$ N: number of atoms V: material volume

- □ The number density of atoms at a distance *r* from an origin atom is given by $\rho \cdot g(r)$
- $\Box \text{ When } r \rightarrow 0, g \rightarrow 0$
- $\square \text{ When } r \to \infty, g \to 1$

PDFs of ideal (hard sphere) crystals vs. glasses

Mathematical description of PDF

Probability density for finding an atom at r :

$$\rho^{(1)}(\mathbf{r}) = \left\langle \sum_{m}^{N} \delta(\mathbf{r} - \mathbf{r}_{m}) \right\rangle = \rho \quad \text{Homogeneous solid}$$

Probability density for finding an atom pair at r and r':

$$\rho^{(2)}(\mathbf{r},\mathbf{r}') = \left\langle \sum_{m}^{N} \sum_{n \neq m}^{N} \delta(\mathbf{r} - \mathbf{r}_{m}) \delta(\mathbf{r}' - \mathbf{r}_{n}) \right\rangle = \rho^{(2)}(|\mathbf{r} - \mathbf{r}'|)$$

Pair distribution function:

Homogeneous, isotropic solid

$$g(r) = \frac{1}{\rho^2} \rho^{(2)} (|r - r'|) = \frac{V^2}{N^2} \rho^{(2)} (|r - r'|)$$

Structure factor of isotropic amorphous solids

$$S(\mathbf{Q}) = \frac{1}{N \langle f_m \rangle^2} \times \left\langle \sum_m^N f_m \exp(-i\mathbf{Q} \cdot \mathbf{r}_m) \times \sum_n^N f_n^* \exp(i\mathbf{Q} \cdot \mathbf{r}_n) \right\rangle$$

$$= \frac{1}{N} \times \left\langle \sum_m^N \sum_n^N \left[\exp(-i\mathbf{Q} \cdot \mathbf{r}_m) \times \exp(i\mathbf{Q} \cdot \mathbf{r}_n) \right] \right\rangle$$

$$= 1 + \frac{1}{N} \left\langle \iint \left\{ \exp\left[-i\mathbf{Q} \cdot (\mathbf{r} - \mathbf{r}')\right] \times \sum_m^N \sum_{n \neq m}^N \delta(\mathbf{r} - \mathbf{r}_m) \delta(\mathbf{r}' - \mathbf{r}_n) \right\} d\mathbf{r} d\mathbf{r}' \right\rangle$$

$$= 1 + \frac{1}{N} \iint \left\{ \exp\left[-i\mathbf{Q} \cdot (\mathbf{r} - \mathbf{r}')\right] \times \rho^{(2)}(\mathbf{r}, \mathbf{r}') \right\} d\mathbf{r} d\mathbf{r}'$$

$$= 1 + \rho \int \left[\exp(-i\mathbf{Q} \cdot \mathbf{r}) \times g(\mathbf{r}) \right] d\mathbf{r} \qquad \text{where } \mathbf{r} = |\mathbf{r} - \mathbf{r}'|$$

In isotropic solids structure factor is related to the Fourier transform of PDF

Debye scattering equation

Isotropic amorphous media:

$$S(\mathbf{Q}) = 1 + \rho \int \left[\exp(-i\mathbf{Q} \cdot \mathbf{r}) \times g(r) \right] d\mathbf{r}$$
$$= 1 + 4\pi \rho \int_0^\infty r^2 g(r) \frac{\sin(\mathbf{Q}r)}{\mathbf{Q}r} \cdot dr \qquad \text{where } \mathbf{Q} = |\mathbf{Q}| = \frac{4\pi}{\lambda} \sin\theta$$

• The inverse transform:

$$g(r) = 1 + \frac{1}{2\pi^2 \rho} \int_0^\infty \left[S(Q) - 1 \right] \cdot Q^2 \frac{\sin(Qr)}{Qr} \cdot dQ$$

XRD spectra can be used to infer PDF of isotropic amorphous solids

- Sources of error
 - \Box S(Q) data truncation error
 - □ X-ray photon shot noise
 - Finite resolution
- Mitigation strategies
 - □ Use Mo ($\lambda_{K\alpha}$ = 0.71 Å) or Ag ($\lambda_{K\alpha}$ = 0.56 Å) sources instead of Cu source ($\lambda_{K\alpha}$ = 1.54 Å)
 - Increase collection time

Determination of Pair Distribution Functions (PDF) from Bruker

Title: X-r	ay PDF	Producer: xiangyun
History -> File Autocaye: C	N = Ouist OFF = Working Directory	h24/vian mm/hyniects/PDEgetX2/souvce
		The manage as projection of generation and
	Data File Format: SPEC Customize Batships	b. Edit Ezp. Sanes
Sample:	Sam. Bkg.:	Con. Bkg:
Detector # K Cobinaa	Der Cohman Der EzrCol Narda	Krasy AddSura MolSura
🗖 1 🛛 Uallaosen 🗖	Ualaoun - Ualaoun -	Ĭ.
Ualaowa 🗖	Ualaowa = Ualaowa = I	I I I
		- ()
Expt. Configuration Sample I	Information I(Q) Setup Calib. S(Q) Correc	ctions G(r) Optimization Data Visualization
Method: 🔷 Generic 🗳	- I(Ç) Sizer. SetUp: 🛛 Eleous 🗖	I Laue Diffuse Scattering
Method: 🔷 Generic 🛛 🕹	I(Q) Sizer. SetUp: Elseus =	☐ Laue Diffuse Scattering ☐ Weighting Function Type: <asf>2 =</asf>
Method: ^ Generic ~	r I(C) Sizo1. SetUp: Elsens = Compton Scattering profile: emperical form =	Laue Diffuse Scattering Weighting Function Type: <asf>2 = Qorter: 5,0000 Width. [100 Cycles* 500</asf>
Method:	r I(C) SizoL SetUp: Elsons = Compton Scattering profile: emperical form = Railendwin Func Width: In fritonor	Laue Diffuse Scattering Weighting Function Type: <asf>?2 = Qotar: B.00000 Whith. 100 Cyclar: \$00 Rdft S(0) w/ Const = + 100000 * 100000</asf>
Method: & Generic 🔷	r I(C) Sizer SetUp Elseur = Compton Scattering profile: emperical form = Rulandwin Func. Width: 00100000	Laue Diffuse Scattering Weighting Function Type: <ast>2 Qortar: \$50000 Width. [100 Cyclar. Edit S(Q) with Const. +: [1,00000</ast>
Method: & Generic Sample Self-Absorption Multiple Scattering (2nd only) Oblique Incidence Transmissoin Coeff :: [].580000 I Fluorescence Type: Counted I	r I(C) Size1. SetUp: Elseur. = Compton Seattering profile: emperical form = Rulandwin Fune. Width: D 0100000 F Breit-Dirac Factor Expo: 3 =	Eaue Diffuse Scattering Weighting Function Type: <asf>^2 = Cortaer B.00000 Width. [100 Cyclaer [500 Edit S(Q) wh: Const. = +: [1.00000 *: [1.00000 Qortaer [5.00000 Width. [100 Cyclaer. [500</asf>
Method: & Generic Sample Self-Absorption Multiple Sostering (2nd only) Oblique Incidence Transmissoin Coeff:: [].980000 I Fluorescence Type: Conctume = Scale:]	r I(C) Sizo1. SetUp: Elseur. = Compton Sextering profile: emperical form = Rulandwin Fune. Width: D0100000 Energy Dependent: 1/E Linear. =	Image: Seattering Weighting Function Type: <asf>^2 = Qarser \$100000 Width. \$100 Cyclase \$100 Edit S(Q) wf: Const. = + \$100000 *: \$100000 Qarser \$100000 Width. \$100 Cyclase. \$100 Qarser \$100000 Width. \$100 Cycles. \$100 Smoothing Qmin: \$10000 Width: \$100</asf>
Method: & Generic Sample Self-Absorption Multiple Soattering (2nd only) Oblique Incidence Transmissoin Coeff:: Descooo Fluorescence Type: Coacetat = Scele: Difference X-ray Polarization	r I(Q) Sizor. SetUp: Elsons = Compton Seattering profile: emperical form = Realandwin Fune: Width: [0.0100000 FBreit-Dirac Factor Expo: 3 = Energy Dependent: 1/E Listans = a: [0.050000] b: [0.000007]	Laue Diffuse Scattering Weighting Function Type: <asf>^2 = Cotor: \$100000 Wubb. \$00 Edit S(Q) w/: Cotost = *. \$100000 *: \$100000 Cotor: \$100000 Wubb. \$100 Cycles: \$00 Cotor: \$10000 Wubb. \$100 Cycles: \$100 Qotter: \$10000 Wubb. \$100 Cycles. \$000 Smoothing Qmin: \$12,0000 Wubb. \$2 \$2000</asf>
Method: & Generic Sample Self-Absorption Multiple Scattering (2nd only) Oblique Incidence Transmissein Goeff.: [p_S0000] Fluorescence Type: Conorcast Scale: [b_S0000] X-ray Polarization Scale with High Q Ratio: 0.0	 I(C) Size1. SetUp: Elseus. Compton Scattering profile: emperical form - Rulandwin Func. Width: D 0100000 Breit-Dirac Factor Expo: 3 Energy Dependent: 1/B Linessz a: D 0:50000 b: D 000000 a: D 0:50000 b: D 000000 	I Laue Diffuse Scattering Weighting Function Type: <asf>2 Qotar: [b.00000] Whith: [100] Cyclar: Edit S(Q) wf: Const +: [b.00000] Gotar: [b.00000] Whith: [b.00000] Cotar: [b.00000] Whith: [b.00000] Smoothing Quint: [b.20000] Whith: Damp F(Q) Genesin Width (/A): [b.20000] Interpolate Qmin to 0.0 Linser </asf>
Method: & Generic Sample Self-Absorption Multiple Scattering (2nd only) Oblique Incidence Transmissoin Coeff : []::800000 Fluorescence Type: Constract Scale: []::1000000 X-ray Polarization Scale with High Q Ratio: 0.0 Reset Data Get I(Q)	I(C) SizoL SetUp Elsons = Compton Scattering profile: emperical form = Pollandwin Func. Width: D.010000C Participarse Factor Expo: 3 = Energy Dependent: 175 Linese = a: D.055000C b: D.000000 Calc Correctional Get S(Q) Get G(f)	Image: Seattering Weighting Function Type: Qotter: B.00000 Width. B.00000 Edit S(Q) wh: Const. = +: B.00000 Qotter: B.00000 Qotter: B.00000 Qotter: B.00000 Width. J.D.D. Qotter: B.00000 Width. J.D.D. Smoothing Qmin: Jamp F(Q) Gaussin Width (/A): Bamp F(Q) Gaussin Width (/A): Plot Data Advanced->

<u>PDFGetX2 homepage</u> J. Appl. Cryst. **37**, 678 (2004)

Electron and neutron diffraction

Electron diffraction

- □ Much smaller wavelength (e.g. $\lambda \sim 2$ pm for 300 keV electrons)
- Small spot size (e.g. in the case of SAED)

Neutron diffraction

- Interacts with nuclei rather than electrons
- Can discriminate neighboring elements or isotopes
- Can detect light elements

Courtesy of INSPIRE HEP. License: CC0.

Class. Quantum Grav. 27, 225020 (2010)

Raman spectroscopy

When asked about his inspiration behind the Nobel Prize winning optical theory, Raman said he was inspired by the "wonderful blue opalescence of the Mediterranean Sea" while he was going to Europe in 1921.

Chandrasekhar Venkata Raman (1888-1970)

Image is in the public domain. Source: Wikimedia Commons.

Raman spectroscopy

- Raman scattering: inelastic and nonlinear interaction of photons with phonons
 - Photon phonon = Stokes line
 - □ Photon + phonon = anti-Stokes line

Raman spectra of amorphous materials

Amorphous materials typically have broad Raman peaks
 Dispersion of local structures and phonon energy

Raman spectrum of c-Si

Raman spectrum of As₂S₃ glass

Example: Raman analysis of TeO₂-Bi₂O₃-ZnO glass

Assignment
Bending mode of Te-O-Te linkage in TeO ₃ network backbone
Bending mode of O-Te–O linkages in TeO ₄ network backbone
Soda-lime glass substrate contribution
Vibration of the Te-O bonds in TeO ₄ trigonal bipyramid with bridging oxygen
Stretching of Te-O or Te=O which contain non-bridging oxygen (NBO) in TeO ₃₊₁ or TeO ₃

J. Am. Ceram. Soc. 98, 1731 (2015)

Calorimetry (thermal analysis)

Apparatus for measuring animal heat Pierre Louis Dulong, Annales de chimie et

de physique (1841)

Courtesy of Gallica. Source: Dulong, "Mémoire sure la chaleur animale." *Annales de chimie et de physique* SER3, T1 (1841): 440-455 (plate p. iii).

Differential Scanning Calorimetry (DSC)

Differential Thermal Analysis (DTA)

Both techniques involve a sample and an inert reference with known heat capacity both undergoing controlled heating or cooling

Heating rate is kept constant for both the sample and the reference, and heat flow to the sample minus heat flow to the reference is recorded

Both the sample and the reference undergo identical **thermal cycle** and **temperature difference** between sample and reference is recorded

Differential scanning calorimetry of glass materials

Temperature

Glass transition regime behavior in DSC

Shape of DSC curve at the glass transition regime depends on heating rate and the sample's thermal history

Differential thermal analysis of glass materials

Temperature

Evaluation of glass forming ability

Figure removed due to copyright restrictions. See Figure 1: Hrubý, A. "Evaluation of glass-forming tendency by means of DTA." *Czech. J. Phys. B* 22 (1972): 1187-1193.

FOM for glass stability:

$$\left(T_{x}-T_{g}\right)/\left(T_{m}-T_{x}\right)$$

Hruby coefficient

 Addition of Si increases glass melt viscosity and improves glass forming ability

Czech. J. Phys. B 22, 1187 (1972)

Summary

Diffraction

- Debye diffraction equation: relation between structure factor and PDF in homogeneous, isotropic amorphous solids
- Solving PDF from experimentally measured XRD spectra: corrections and normalization
- □ X-ray, electron, and neutron diffraction
- Raman spectroscopy
 - Broad Raman peaks: phonon energy dispersion
- Thermal analysis
 - DSC vs. DTA: data interpretation
 - Glass transition regime behavior

3.071 Amorphous Materials Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.