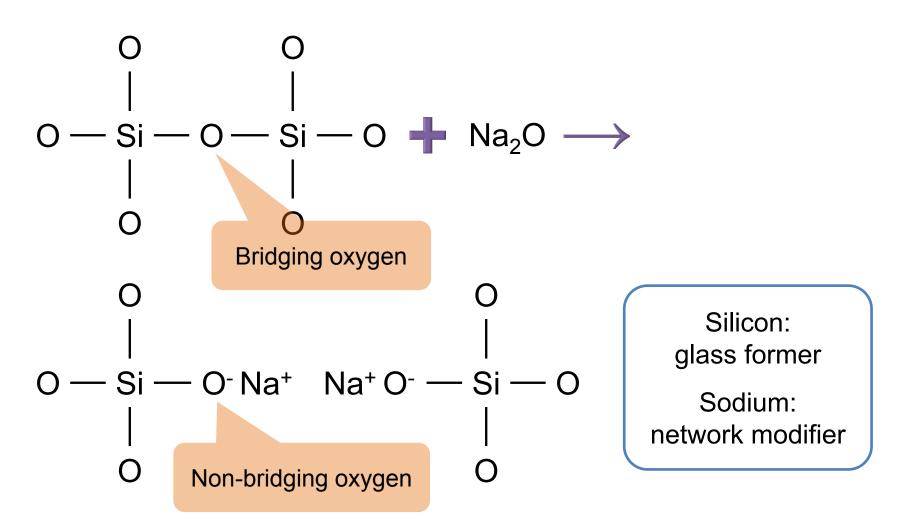


Juejun (JJ) Hu

Network formers, modifiers and intermediates

Glass network formers

□ Form the interconnected backbone glass network


Glass network modifiers

- Present as ions to alter the glass network
- Compensated by non-bridging oxygen (NBO) in oxide glasses
- Usually reduce glass network connectivity

Intermediates

Can function as network formers or modifiers depending on glass composition

Network formers, modifiers and intermediates

1 H Hydrogen 1.00794		 <u>Glass former:</u> high valence state, covalent bonding with O 														2 He Helium 4,003	
3 Li Lithium 6.941	4 Be Beryllium 9.012182	 <u>Modifier:</u> low valence state, ionic bonding with O 								5 B Boron 10.811	6 C Carbon 12.0107	7 N Nitrogen 14.00674	8 O 0xygen 15.9994	9 F Fluorine 18.9984032	10 Ne ^{Neon} 20.1797		
11 Na _{Sodium} 22.989770	12 Mg Magnesium 24.3050											13 Al Aluminum 26.981538	14 Si ^{Silicon} 28.0855	15 P Phosphorus 30.973761	16 S ^{Sulfur} 32.066	17 Cl Chlorine 35.4527	18 Ar ^{Argon} 39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium 39.0983	Calcium 40.078	Scandium 44.955910	Titanium 47.867	Vanadium 50.9415	Chromium 51.9961	Manganese 54.938049	1ron 55.845	Cobalt 58.933200	Nickel 58.6934	Copper 63.546	Zinc 65.39	Gallium 69.723	Germanium 72.61	Arsenic 74.92160	Selenium 78.96	Bromine 79.904	Krypton 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
Rubidium 85.4678	Strontium 87.62	Yttrium 88.90585	Zirconium 91.224	Niobium 92.90638	Molybdenum 95.94	Technetium (98)	Ruthenium 101.07	Rhodium 102.90550	Palladium 106.42	Silver 107.8682	Cadmium 112.411	Indium 114.818	Tin 118.710	Antimony 121.760	Tellurium 127.60	Iodine 126.90447	Xenon 131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Ро	At	Rn
Cesium 132.90545	Barium 137.327	Lanthanum 138.9055	Hafnium 178.49	Tantalum 180.9479	Tungsten 183.84	Rhenium 186.207	Osmium 190.23	Iridium 192.217	Platinum 195.078	Gold 196.96655	Mercury 200.59	Thallium 204.3833	Lead 207.2	Bismuth 208.98038	Polonium (209)	Astatine (210)	Radon (222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114			,	/
Francium (223)	Radium (226)	Ac Actinium (227)	Rf Rutherfordium (261)	Dubnium (262)	Seaborgium (263)	Bh Bohrium (262)	Hassium (265)	Mt Meitnerium (266)	(269)	(272)	(277)						

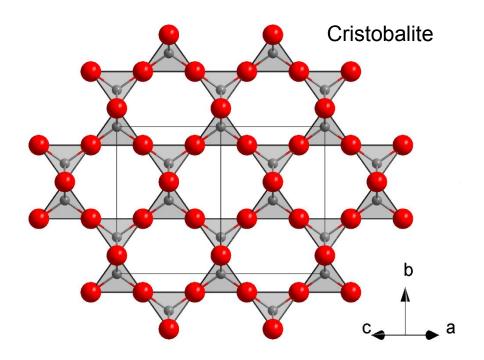
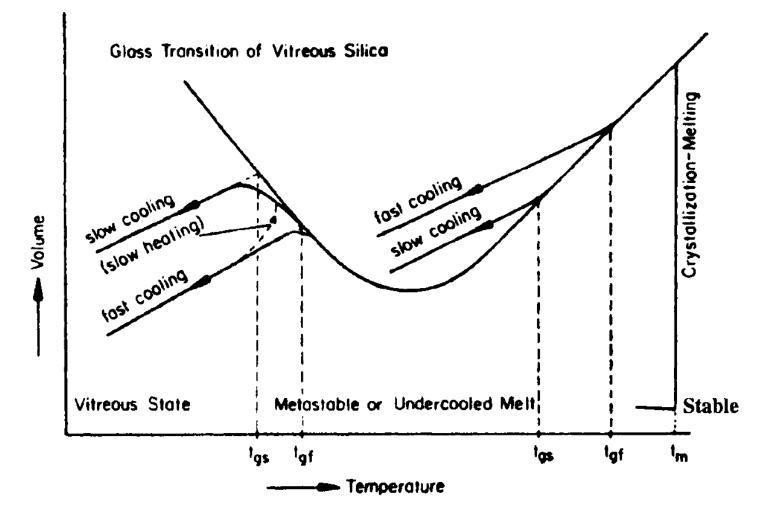
Network modifiers

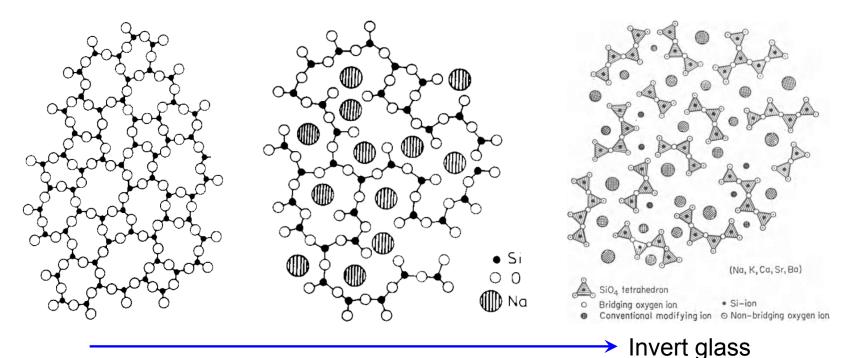
Glass formers

Intermediates

Silica glass (SiO₂)

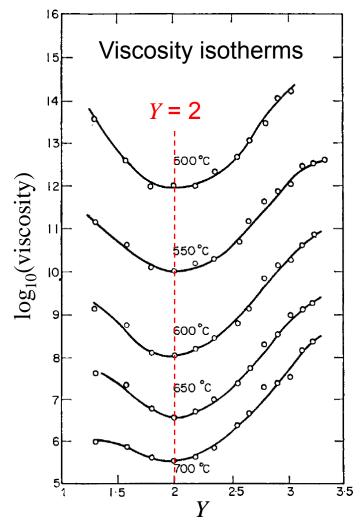
- A 3-D glass network predominantly consisting of corner-sharing SiO₄ tetrahedra interconnected by bridging oxygen (BO)
- High network connectivity: high softening point, low diffusion coefficient, small coefficient of thermal expansion (CTE)


Image of vitreous silica removed due to copyright restrictions.

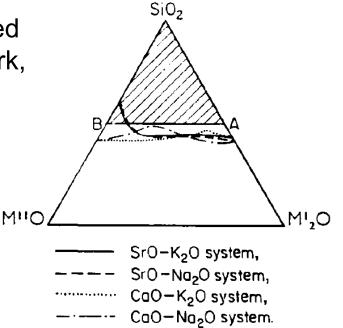
Volume anomaly in silica glass

Alkali silicate glass

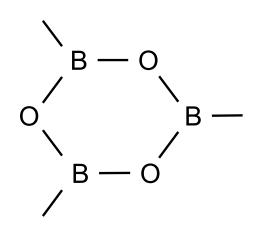

- Each alkali ion creates one non-bridging oxygen
- Reduced network connectivity: viscosity decreases (compared to silica at the same T), diffusion coefficient and CTE increases
- Increased ionic conductivity, reduced chemical resistance

Increasing alkali concentration

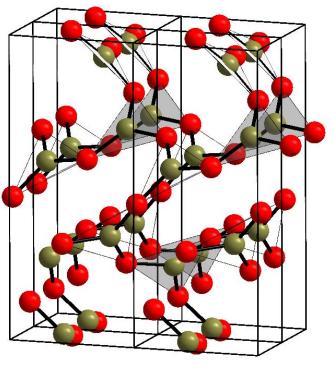
Structural determination in alkali silicate glass


- Y: the average number of corners shared per SiO₄ tetrahedron
- In a glass with molar composition: $x \operatorname{Na_2O} \cdot (1-x) \operatorname{SiO_2}$
 - **Number of NBO per mole:** 2x
 - **Number of BO per mole:** 2-3x
 - □ Number of corners shared per mole: $(2-3x) \times 2 = 4-6x$
 - Number of tetrahedra per mole: 1-x
 - \Box *Y* = (4-6*x*) / (1-*x*)
- Onset of inverted glass structure:
 Y = 2, x = 0.5

Alkali-alkaline earth-silicate glass

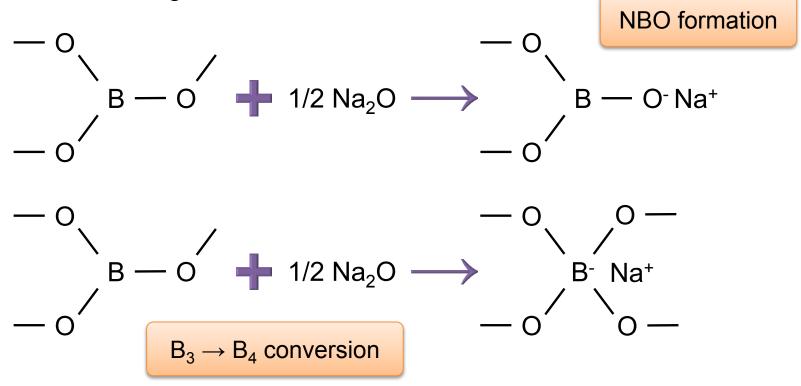

Each alkaline earth ion creates two NBOs

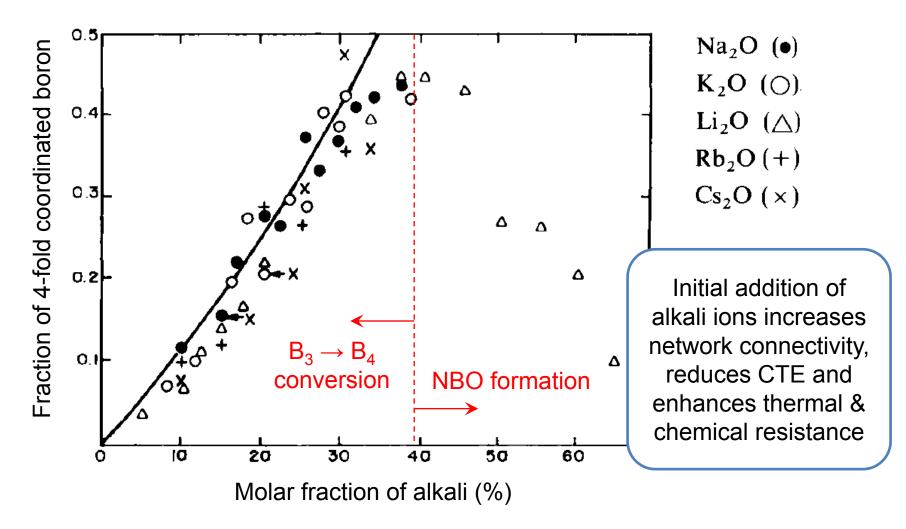
- Increased network connectivity compared to alkali silicates: stabilized glass network, improved chemical resistance
- Approximate composition of commercial soda-lime glass (window glass):
 - \square 16Na₂O·10CaO·74SiO₂



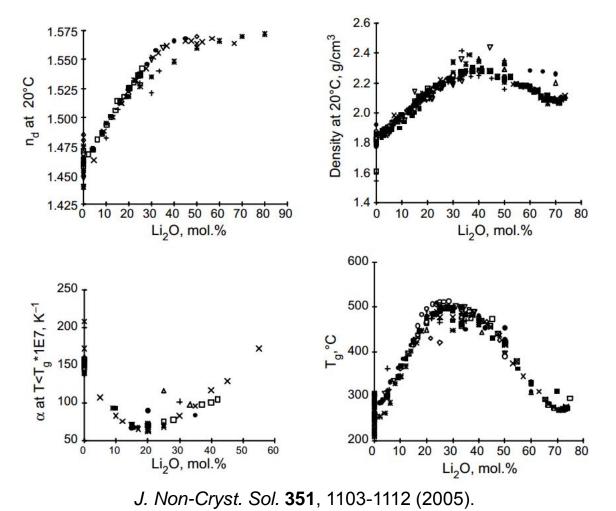
Borate glass

B₂O₃: the glass former consisting of corner-sharing BO₃ triangles connected by bridge oxygen


Boroxol rings: basic structural unit in boric oxide glass


B₂O₃ crystal

Borate glass


- B₂O₃: the glass former consisting of corner-sharing BO₃ triangles connected by bridge oxygen
- Alkali borate glass:

The Boron anomaly

Various properties of lithium borate glass

More than two structural transformations contribute to the boron anomaly

Further reading: Shelby Ch. 5

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. Source: Mazurin, O.V. "Glass Properties: Compilation, Evaluation, and Prediction."

J. Non-Crystalline Solids 351 (2005): 1103-1112.

(Alkali) borosilicate glass

- Borosilicate glass: $x M_2 O \cdot y B_2 O_3 \cdot (1 x y) SiO_2$
 - \square SiO₂ and B₂O₃ : glass formers
 - □ Alkali ions (M⁺) converts B_3 to B_4 states (when x / y < 0.5)
 - Each additional alkali ion creates one NBO (when x / y > 0.5)
- The original Pyrex[™] recipe: 4Na₂O·13B₂O₃·2Al₂O₃·81SiO₂

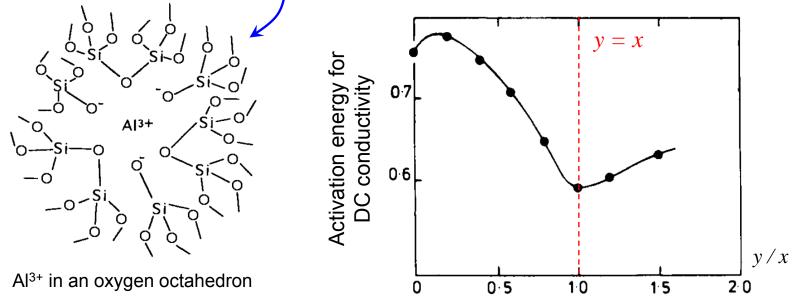
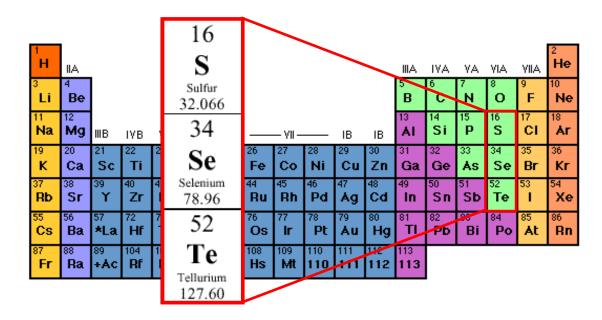


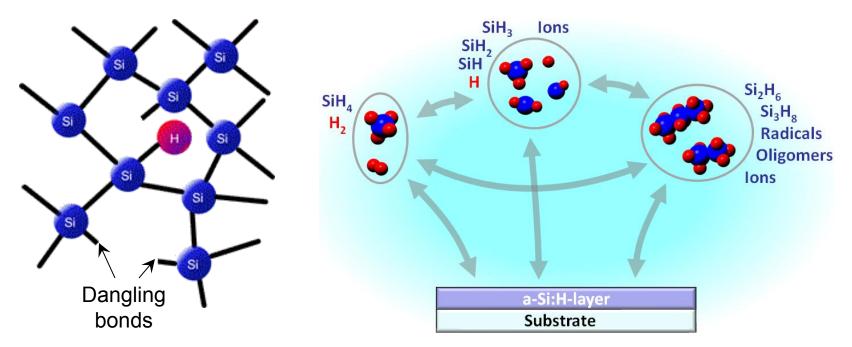
Image of space shuttle tile courtesy of the Science Museum London on Wikimedia Commons. License CC BY-SA. Glassware images © Pyrex. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.


Space shuttle tile coating

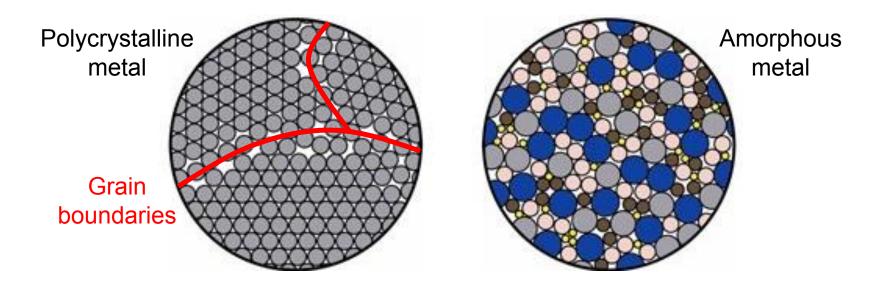
(Alkali) aluminosilicate glass

- Aluminosilicate glass: $x M_2 O \cdot y Al_2 O_3 \cdot (1 x y) SiO_2$
 - \Box SiO₂ : glass former
 - Al functions as a glass former in the form of AlO₄ groups (when x > y)
 - □ Each excess AI atom creates three NBOs (when x < y)

Chalcogenide glass (ChG)



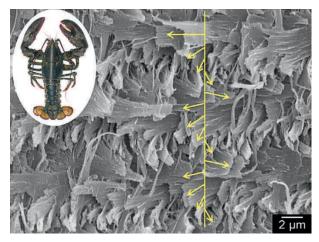
- Reduced mechanical strength
- Low softening temperature
- Low phonon energy (infrared transparency)
- Enhanced optical (Kerr) nonlinearity


ACerS Bull. 94, 24-29 (2015).

Amorphous semiconductors

- Tetrahedral glasses
 - □ a-Si, a-Ge, a-Si:H (hydrogenated amorphous silicon)
- Vapor deposition: plasma enhanced chemical vapor deposition (PECVD), sputtering, electron beam evaporation

Metallic glass (amorphous metal, glassy metal)


- Inoue's empirical rules for bulk metallic glass (BMG) formation
 - Multicomponent systems consisting of three or more elements
 - □ Significant difference in atomic size ratios (> 12%)
 - Negative enthalpy of mixing

Other glass groups and glass formers

- Phosphate glass: P₂O₅
- Heavy metal oxide (HMO) and transition metal oxide glass
 - \Box TeO₂, PbO, Bi₂O₃, V₂O₅, TiO₂, etc.
- Halide glass and alloys
 - \Box e.g. ZBLAN: **Z**rF₄-**B**aF₂-**L**aF₃-**A**IF₃-**N**aF
 - Chalcohalide, oxyhalide, etc.
- Amorphous minerals
 - Opal, biominerals

and many others...

Amorphous calcium carbonate in lobster carapace

"The Formula for Lobster Shell," Max Planck Research

Representation of glass composition

- In oxide glasses, the convention is to list the glass network modifiers in increasing valence order ending with glass network formers
 - \square Example: K₂O·CaO·5SiO₂
 - \square In mole fraction: 14.3K₂O·14.3CaO·71.5SiO₂
 - □ By weight: $20.9K_2O \cdot 12.4CaO \cdot 66.7SiO_2$ (wt%)
- In metallic glasses, the listing is usually done in decreasing order of content
 - □ Example: $Zr_{41.2}Be_{22.5}Ti_{13.8}Cu_{12.5}Ni_{10.0}$ (Vitreloy-1)

Summary

- Glass formers, network modifiers, and intermediates
- Silicate glass chemistry
 - Corner-sharing tetrahedra
 - □ Bridging and non-bridging oxygens
 - Different modifiers: alkali, alkali earth
- Borates and boron anomaly
- Impact of network connectivity on glass properties
- Other glass systems
 - Chalcogenides: weak bonds
 - Tetrahedral glasses: passivation of dangling bonds
 - □ Amorphous metals: w/o grain boundaries

Summary of oxide glass chemistry

	SiO ₂ (silicate)	B ₂ O ₃ (borate)				
No modifier	Structural unit: SiO ₄ No NBOs, low or negative CTE, high softening point, low diffusivity	Structural unit: BO ₃ No NBOs, corrugated layered structure				
Alkali oxide	Each ion creates 1 NBO; large CTE, low softening point, poor chemical durability, ionic conductivity	Each ion creates 1 B ₄ group or 1 NBO; extremum in glass properties (boron anomaly)				
Alkaline earth oxide	Each ion creates 2 NBOs; similar effects as alkali ions although some network connectivity is preserved	Each ion creates 2 B ₄ groups or 2 NBOs; extremum in glass properties (boron anomaly)				
Alumina (Al ₂ O ₃)	Each ion creates 3 NBOs; in the presence of alkali ions $Al_3 \rightarrow Al_4$ conversion occurs	B_2O_3 and AI_2O_3 both serve as glass formers; glass is stable only with high B_2O_3 content				

MIT OpenCourseWare http://ocw.mit.edu

3.071 Amorphous Materials Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.