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After-class reading list 

 Fundamentals of Inorganic Glasses 

 Ch. 3 (except section 3.1.4) 

 Introduction to Glass Science and Technology 

 Ch. 2 

 3.022 nucleation, precipitation growth and interface 

kinetics 

 Topological constraint theory 

 M. Thorpe, “Continuous deformations in random networks” 

 J. Mauro, “Topological constraint theory of glass” 
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Glass formation from liquid 
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Glass forming theories 

 The kinetic theory 

 Nucleation and growth 

 “All liquids can be vitrified provided that the rate of 

cooling is fast enough to avoid crystallization.” 

 Laboratory glass transition 

 Potential energy landscape 

 Structural theories 

 Zachariasen’s rules 

 Topological constraint theory 
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Crystallization is the opposite of glass formation 

Crystallized Amorphous 

Suspended Changes in Nature, Popular Science 83 (1913). 

Image is in the public domain.



Thermodynamics of nucleation 
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Thermodynamics of nucleation 
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Kinetics of nucleation 
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Kinetics of growth 
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Kinetics of growth 
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Crystal nucleation and growth 
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Time-temperature-transformation diagram 

Critical 

cooling rate Rc 

R. Busch, JOM 52, 39-42 (2000) 
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Critical cooling rate and glass formation 

Technique 

Typical 

cooling rate 

(°C/s) 

Air quench 1-10 

Liquid quench 103 

Droplet spray 102-104 

Melt spinning 105-108 

Selective laser 

melting 
106-108 

Vapor deposition Up to 1014 

Material 
Critical cooling 

rate (°C/s) 

Silica 9 × 10-6 

GeO2 3 × 10-3 

Na2O·2SiO2 6 × 10-3 

Salol 10 

Water 107 

Vitreloy-1 1 

Typical metal 109 

Silver 1010 

max ~
c

T
d

R

 
Maximum glass sample thickness:  : thermal diffusivity 
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Glass formation from liquid 
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 Glasses obtained at 

different cooling rates 

have different structures 

 With infinitely slow 

cooling, the ideal glass 

state is obtained 
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Potential energy landscape (PEL) 
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Potential energy landscape (PEL) 
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Laboratory glass transition 

 Liquid: ergodic 

 Glass: nonergodic, 

confined to a few 

local minima 
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Glass formers Network modifiers Intermediates 

 Glass former: high valence 

state, covalent bonding with O 

 Modifier: low valence state, 

ionic bonding with O 
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Zachariasen’s rules 

Rules for glass formation in an oxide AmOn 

 An oxygen atom is linked to no more than two atoms of A 

 The oxygen coordination around A is small, say 3 or 4 

 Open structures with covalent bonds 

 Small energy difference between glassy and crystalline states 

 The cation polyhedra share corners, not edges, not faces 

 Maximize structure geometric flexibility 

 At least three corners are shared 

 Formation of 3-D network structures 

 Only applies to most (not all!) oxide glasses 

 Highlights the importance of network topology 
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Classification of glass network topology 

Floppy / flexible 
Underconstrained 

• # (constraints) < 
# (DOF) 

• Low barrier against 
crystallization 

Isostatic 
Critically constrained 

• # (constraints) = 
# (DOF) 

• Optimal for glass 
formation 

Stressed rigid 
Overconstrained 

• # (constraints) > 
# (DOF) 

• Crystalline clusters 
(nuclei) readily 
form and percolate 
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Number of constraints 

Denote the atom coordination number as r 

 Bond stretching constraint: 

 Bond bending constraint: 

 One bond angle is defined when r = 2 

 Orientation of each additional bond is specified by two angles 

 Total constraint number: 
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Isostatic condition / rigidity percolation threshold 

 Total number of degrees of freedom: 

 Isostatic condition: 

 

 Examples: 

 GexSe1-x 

 AsxS1-x 

 SixO1-x 

23 rn 

 2 23 2.5 3 2.4r rn r n   r     

 4 1 2 2 2r x x x      

 3 1 2 2r x x x      

 4 1 2 2 2r x x x      

Why oxides and chalcogenides make good glasses? 
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Temperature-dependent constraints 

 The constraint number should be evaluated at the glass 

forming temperature (rather than room temperature) 

 Silica glass SixO1-x 

 Bond stretching 
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Temperature-dependent constraints 

 Each type of constraint is associated with an onset 

temperature above which the constraint vanishes 

“Topological constraint theory of glass,” ACerS Bull. 90, 31-37 (2011). 
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Enumeration of constraint number 

Bond stretching constraints (coordination number): 

 8-N rule: applies to most covalently bonded nonmetals (O, S, Se, 

P, B, As, Si, etc.) 

 Exceptions: heavy elements (e.g. Te, Sb) 

# 2 3BB r 

Bond bending constraints: 

 Glasses with low forming temperature: 

 

 Atomic modeling or experimental 

characterization required to ascertain 

the number of active bond bending 

constraints 
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Property dependence on network rigidity 

 Many glass properties exhibit extrema or kinks at the 

rigidity percolation threshold 2.4r 

J. Non-Cryst. Sol. 185, 289-296 (1995). 
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Measuring glass forming ability 

 Figure of merit (FOM): 

 Tx : crystallization temperature 

 Tg : glass transition temperature 

x gT T T  

T 

CP 

Tg 

 Tg is dependent on 

measurement method 

and thermal history 

 Alternative FOM: 

 
    Hruby coefficient 

   x g m xT T T T 
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Summary 

 Kinetic theory of glass formation 

 Driving force and energy barrier for nucleation and growth 

 Temperature dependence of nucleation and growth rates 

 T-T-T diagram and critical cooling rate 

 Laboratory glass transition 

 Potential energy landscape 

 Ergodicity breakdown: laboratory glass transition 

 Path dependence of glass structure 

 Glass network topology theories 

 Zachariasen’s rules 

 Topological constraint theory 

 Parameters characterizing glass forming ability (GFA) 
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