

Juejun (JJ) Hu

After-class reading list

- Fundamentals of Inorganic Glasses
 - \Box Ch. 3 (except section 3.1.4)
- Introduction to Glass Science and Technology
 - 🗆 Ch. 2
- 3.022 nucleation, precipitation growth and interface kinetics
- Topological constraint theory
 - M. Thorpe, "Continuous deformations in random networks"
 - □ J. Mauro, "Topological constraint theory of glass"

Glass formation from liquid

Glass forming theories

- The kinetic theory
 - Nucleation and growth
 - "All liquids can be vitrified provided that the rate of cooling is fast enough to avoid crystallization."
- Laboratory glass transition
 - Potential energy landscape
- Structural theories
 - Zachariasen's rules
 - Topological constraint theory

Crystallization is the opposite of glass formation

Suspended Changes in Nature, Popular Science 83 (1913).

Thermodynamics of nucleation

$$G = H - TS$$

 $\therefore S_l > S_s$

$$\frac{\partial G}{\partial T} = -S$$

$$\therefore \left| \frac{\partial G_l}{\partial T} \right| > \left| \frac{\partial G_s}{\partial T} \right|$$

When $T < T_m$,

$$\Delta G_{l \to s} = G_s - G_l < 0$$
$$= V \cdot (T_m - T) \cdot \Delta S$$

Driving force for nucleation

Thermodynamics of nucleation

Surface energy contribution

 $\Delta G_{S} = S \cdot \gamma$

Energy barrier for nucleation

Kinetics of nucleation

Nucleation rate:

$$R_n \propto D \cdot \exp\left(-\frac{W}{k_B T}\right)$$

$$\therefore D = D \cdot \exp\left(-\frac{\Delta E_D}{k_B T}\right)$$

$$\therefore R_n = D \cdot \exp\left(-\frac{\varDelta E_D + W}{k_B T}\right)$$

 $T \to T_m: W \to \infty, R_n \to 0$ $T \to 0: R_n \to 0$

Kinetics of growth

Flux into the nucleus:

$$F_{\leftarrow} \propto v \cdot \exp\left(-\frac{\Delta E}{k_B T}\right)$$

Flux out of the nucleus:

$$F_{\rightarrow} \propto v \cdot \exp\left(-\frac{\Delta E + \Delta G}{k_B T}\right)$$

Kinetics of growth

Net diffusion flux:

$$R_{g} \propto F_{\leftarrow} - F_{\rightarrow}$$

$$= \nu \cdot \exp\left(-\frac{\Delta E}{k_{B}T}\right) \cdot \left[1 - \exp\left(-\frac{\Delta G}{k_{B}T}\right)\right]$$

$$\sim \nu \cdot \exp\left(-\frac{\Delta E}{k_{B}T}\right) \cdot \frac{\Delta G}{k_{B}T}$$

$$T \rightarrow T_{m} \colon \Delta G \rightarrow 0, R_{g} \rightarrow 0$$

$$T \rightarrow 0 \colon R_{n} \rightarrow 0$$

Crystal nucleation and growth

Extent of supercooling

Time-temperature-transformation diagram

Critical cooling rate and glass formation

Material	Critical cooling rate (°C/s)				
Silica	9 × 10 ⁻⁶				
GeO ₂	3 × 10 ⁻³				
Na ₂ O·2SiO ₂	6 × 10 ⁻³				
Salol	10				
Water	10 ⁷				
Vitreloy-1	1				
Typical metal	10 ⁹				
Silver	10 ¹⁰				

Technique	Typical cooling rate (°C/s)					
Air quench	1-10					
Liquid quench	10 ³					
Droplet spray	10 ² -10 ⁴					
Melt spinning	10 ⁵ -10 ⁸					
Selective laser melting	10 ⁶ -10 ⁸					
Vapor deposition	Up to 10 ¹⁴					

Maximum glass sample thickness: d_{\max}

$$\sim \sqrt{\frac{\alpha \cdot \Delta T}{R_c}}$$

 α : thermal diffusivity

Glass formation from liquid

Potential energy landscape (PEL)

- The metastable glassy state
- MetastableThermodynamicallyglassy statestable crystalline state Structure

Potential energy landscape (PEL)

16

Laboratory glass transition

Liquid: ergodic Glass Glass: nonergodic, Liquid confined to a few local minima PE $t_{obs} < \tau$ Inter-valley transition time τ : $-\frac{B}{k_{B}T}$ $\tau = \frac{1}{\nu} \cdot \exp\left(\frac{1}{\nu}\right)$ Laboratory Ideal glass glass states Crystal B : barrier height v: attempt frequency

Atomic coordinates r_1, r_2, \ldots, r_{3N}

Нуд 1.0	1 H drogen 00794			 Glass former: high valence state, covalent bonding with O 												2 He Helium 4.003		
] Li 6.	3 Li thium .941	4 Be Beryllium 9.012182		ionic bonding with O									5 B Boron 10.811	6 C Carbon 12.0107	7 N Nitrogen 14.00674	8 O 0xygen 15.9994	9 F Fluorine 18.9984032	10 Ne ^{Neon} 20.1797
N 22.9	11 Na odium 089770	12 Mg Magnesium 24.3050		13 14 15 16 17 13 13 14 15 16 17 14 Al Si P S Cl A Aluminum Silicon Phosphorus Sulfur Chlorine Arg 26.981538 28.0855 30.973761 32.066 35.4527 39.05										18 Ar ^{Argon} 39.948				
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Pot	K assium	Ca Calcium	Scandium	Ti _{Titanium}	V Vanadium	Cr	Manganese	Fe	Co	Ni Nickel	Cu	Zn	Gallium	Germanium	As Arsenic	Selenium	Bromine	Krypton
39.	.0983 37	40.078 38	44.955910 30	47.867 40	50.9415 41	51.9961 42	54.938049 43	55.845 44	58.933200 45	58.6934 46	63.546 47	65.39 48	69.723 49	72.61	74.92160 51	78.96 52	79.904 53	83.80 54
F	Rh	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ασ	Cd	In	Sn	Sb	Te	I	Xe
Rul 85.	bidium .4678	Strontium 87.62	Yttrium 88.90585	Zirconium 91.224	Niobium 92.90638	Molybdenum 95.94	Technetium (98)	Ruthenium 101.07	Rhodium 102.90550	Palladium 106.42	Silver 107.8682	Cadmium 112.411	Indium 114.818	Tin 118.710	Antimony 121.760	Tellurium 127.60	Iodine 126.90447	Xenon 131.29
4	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
C	Cs esium	Ba Barium	La Lanthanum	Hf Hafnium	Ta Tantalum	W Tungsten	Re Rhenium	Os Osmium	Ir Iridium	Pt Platinum	Au	Hg Mercury	Tl Thallium	Pb Lead	Bi Bismuth	Po Polonium	At Astatine	Rn Radon
132.	.90545	137.327	138.9055	178.49	180.9479	183.84	186.207	190.23	192.217	195.078	196.96655	200.59	204.3833	207.2	208.98038	(209)	(210)	(222)
1 8	87	88	89	104	105	106	107	108	109	110	111	112	113	114				
Fra C2	F r ^{incium} 223)	Radium (226)	Ac Actinium (227)	Rutherfordium (261)	Db Dubnium (262)	Seaborgium (263)	Bh Bohrium (262)	Hassium (265)	Meitnerium (266)	(269)	(272)	(277)						

Network modifiers

Glass formers

Intermediates

Zachariasen's rules

Rules for glass formation in an oxide A_mO_n

- An oxygen atom is linked to no more than two atoms of A
- The oxygen coordination around A is small, say 3 or 4
 - Open structures with covalent bonds
 - □ Small energy difference between glassy and crystalline states
- The cation polyhedra share corners, not edges, not faces
 - □ Maximize structure geometric flexibility
- At least three corners are shared
 - Formation of 3-D network structures

Only applies to most (not all!) oxide glasses

Highlights the importance of network topology

Classification of glass network topology

Floppy / flexible Underconstrained

- # (constraints) < # (DOF)
- Low barrier against crystallization

Isostatic Critically constrained

- # (constraints) = # (DOF)
- Optimal for glass formation

Stressed rigid Overconstrained

- # (constraints) > # (DOF)
- Crystalline clusters (nuclei) readily form and percolate

Number of constraints

Denote the atom coordination number as r

- Bond stretching constraint: r/2
- Bond bending constraint: 2r-3 ($r \ge 2$)
 - □ One bond angle is defined when r = 2
 - Orientation of each additional bond is specified by two angles
- Total constraint number:

$$\sum_{r\geq 2} (2.5r-3) = (2.5\langle r \rangle - 3) \cdot n_{r\geq 2}$$

Mean coordination number:

$$\langle r \rangle = \frac{\sum_{r \ge 2} r}{n_{r \ge 2}}$$

Isostatic condition / rigidity percolation threshold

- Total number of degrees of freedom: $3n_{r\geq 2}$
- Isostatic condition:

$$3n_{r\geq 2} = (2.5\langle r \rangle - 3) \cdot n_{r\geq 2} \implies \langle r \rangle = 2.4$$

Examples:

 $\Box \operatorname{Ge}_{x}\operatorname{Se}_{1-x} \langle r \rangle = x \cdot 4 + (1-x) \cdot 2 = 2 + 2x$ $\Box \operatorname{As}_{x}\operatorname{S}_{1-x} \langle r \rangle = x \cdot 3 + (1-x) \cdot 2 = 2 + x$ $\Box \operatorname{Si}_{x}\operatorname{O}_{1-x} \langle r \rangle = x \cdot 4 + (1-x) \cdot 2 = 2 + 2x$

Why oxides and chalcogenides make good glasses?

Temperature-dependent constraints

- The constraint number should be evaluated at the glass forming temperature (rather than room temperature)
- Silica glass Si_xO_{1-x}
 - Bond stretching

$$\frac{r_{Si}}{2} \cdot n_{Si} + \frac{r_O}{2} \cdot n_O$$

- O-Si-O bond angle
 - $(2r_{Si}-3)\cdot n_{Si}$
- □ Isostatic condition

x = 1/3 SiO₂

Temperature-dependent constraints

 Each type of constraint is associated with an onset temperature above which the constraint vanishes

"Topological constraint theory of glass," ACerS Bull. 90, 31-37 (2011).

Enumeration of constraint number

Bond stretching constraints (coordination number):

- 8-N rule: applies to most covalently bonded nonmetals (O, S, Se, P, B, As, Si, etc.)
- Exceptions: heavy elements (e.g. Te, Sb)

Bond bending constraints:

Glasses with low forming temperature:

 $\#_{BB} = 2r - 3$

 Atomic modeling or experimental characterization required to ascertain the number of active bond bending constraints

					2
					Не
					Helium 4.003
5	6	7	8	9	10
B	C	Ν	0	F	Ne
Boron 10.811	Carbon 12.0107	Nitrogen 14.00674	Oxygen 15.9994	Fluorine 18.9984032	Neon 20.1797
13	14	15	16	17	18
Al	Si	Р	S	Cl	Ar
Aluminum 26.981538	Silicon 28.0855	Phosphorus 30.973761	Sulfur 32.066	Chlorine 35.4527	Argon 39.948
31	32	33	34	35	36
Ga	Ge	As	Se	Br	Kr
Gallium 69.723	Germanium 72.61	Arsenic 74.92160	Selenium 78.96	Bromine 79.904	Krypton 83.80
49	50	51	52	53	54
In	Sn	Sb	Te	Ι	Xe
Indium 114.818	Tin 118.710	Antimony 121.760	Tellurium 127.60	Iodine 126.90447	Xenon 131.29
81	82	83	84	85	86
Tl	Pb	Bi	Po	At	Rn
Thallium 204.3833	Lead 207.2	Bismuth 208.98038	Polonium (209)	Astatine (210)	Radon (222)

Property dependence on network rigidity

Many glass properties exhibit extrema or kinks at the rigidity percolation threshold $\langle r \rangle = 2.4$

Fig. 6. Dependence of molar volume on $\langle r \rangle$ for binary Ge-Se and ternary Ge-Sb-Se systems. The molar volume at room temperature for the binary and ternary are represented by \blacksquare and \blacktriangle , respectively. The molar volume values for the binary glasses given by Ota et al. [11] are represented by $\textcircled{\bullet}$ and those for the ternary glasses given by Savage et al. [23] are represented by \blacklozenge . The curves are drawn as a guide to the eye. The maximum measured error is 0.5%.

Fig. 10. ΔC_p versus $\langle r \rangle$ for binary Ge-Se and ternary Ge-Sb-Se systems. The ΔC_p values for the binary and the ternary are represented by \blacksquare and \blacktriangle , respectively. The curves are drawn as a guide to the eye. The maximum measured error is 1.8%.

J. Non-Cryst. Sol. 185, 289-296 (1995).

Measuring glass forming ability

- Figure of merit (FOM): $\Delta T = T_x T_g$
- T_x : crystallization temperature
- T_g : glass transition temperature

✓ T_g is dependent on measurement method and thermal history ✓ Alternative FOM: $(T_x - T_g)/(T_m - T_x)$ Hruby coefficient

Summary

- Kinetic theory of glass formation
 - Driving force and energy barrier for nucleation and growth
 - Temperature dependence of nucleation and growth rates
 - □ T-T-T diagram and critical cooling rate
- Laboratory glass transition
 - Potential energy landscape
 - Ergodicity breakdown: laboratory glass transition
 - Path dependence of glass structure
- Glass network topology theories
 - Zachariasen's rules
 - Topological constraint theory
- Parameters characterizing glass forming ability (GFA)

MIT OpenCourseWare http://ocw.mit.edu

3.071 Amorphous Materials Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.