

Juejun (JJ) Hu

After-class reading list

Fundamentals of Inorganic Glasses

- Ch. 8, Ch. 13, Appendix A
- Introduction to Glass Science and Technology
 - □ Ch. 9 (does not cover relaxation)

Where and why does liquid end and glass begin?

What is the nature of the glassy state? Molecules in a glass are arranged much like those in liquids but are more tightly packed. Where and why does liquid end and glass begin?

"What don't we know?" Science 309, 83 (2005).

Is glass a solid or a viscous liquid?

Solid Elasticity *instantaneous, transient*

$$\sigma_x = E\varepsilon_x$$

 $\sigma_{xy} = G\varepsilon_{xy}$

E : Young's modulus *G* : shear modulus

Viscosity time-dependent, permanent

$$\sigma_{xy} = \eta \cdot \frac{\partial \varepsilon_{xy}}{\partial t}$$

 η : viscosity (unit: Pa·s or Poise)

Viscoelasticity: complex shear modulus

• Consider a sinusoidally varying shear strain $\varepsilon_{xy} = \varepsilon_0 \cdot \exp(i\omega t)$

- Elastic response: $\sigma_{xy} = G\varepsilon_{xy} = G\varepsilon_0 \cdot \exp(i\omega t)$
- Viscous response:

$$\sigma_{xy} = \eta \frac{\partial \varepsilon_{xy}}{\partial t} = i\omega\eta \cdot \varepsilon_0 \exp(i\omega t) = i\omega\eta \cdot \varepsilon_{xy}$$

In a general viscoelastic solid:

$$\sigma_{xy} = (G + i\omega\eta) \cdot \varepsilon_{xy} = G^* \cdot \varepsilon_{xy}$$

 G^* : complex shear modulus

 $G^* = G + i\omega\eta = G' + iG''$ \uparrow Shear/storage modulus

Loss modulus

Phenomenological models of viscoelastic materials

Elasticity: Hookean spring

$$-\sqrt{\sqrt{\sqrt{-}}} \sigma_{xy} = G\varepsilon_{xy}$$

Viscosity: Newtonian dashpot

$$----- \sigma_{xy} = \eta \cdot \frac{\partial \varepsilon_{xy}}{\partial t}$$

- Models assume linear material response or infinitesimal stress
- Each dashpot element corresponds to a relaxation mechanism

The Maxwell element

- Serial connection of a Hookean spring and a Newtonian dashpot
- Total stress: $\sigma = \sigma_E = \sigma_V$
- Total strain: $\mathcal{E} = \frac{\mathcal{E}_E}{\mathcal{E}_E} + \frac{\mathcal{E}_V}{\mathcal{E}_V}$

The Maxwell element

$$\sigma_E = G \varepsilon_E \qquad \sigma_V = \eta \cdot \frac{\partial \varepsilon_V}{\partial t}$$

• Constant stress (creep): $\sigma = \sigma_E = \sigma_V = \text{constant} (t \ge 0)$

$$\varepsilon = \varepsilon_E + \varepsilon_V = \frac{\sigma}{G} + \frac{\sigma}{\eta} \cdot t$$

• Constant strain (stress relaxation): $\varepsilon = \varepsilon_E + \varepsilon_V = \text{constant} (t \ge 0)$

$$\varepsilon_E = \varepsilon \exp\left(-\frac{t}{\tau}\right)$$
 $\varepsilon_V = \varepsilon \left\lfloor 1 - \exp\left(-\frac{t}{\tau}\right) \right\rfloor$ $\tau = \frac{\eta}{G}$ Relaxation time

The Maxwell element

$$\sigma_{E} = G \varepsilon_{E}$$

$$\sigma_{V} = \eta \cdot \frac{\partial \varepsilon_{V}}{\partial t}$$

$$\varepsilon = \varepsilon_E + \varepsilon_V = \varepsilon_0 \exp(i\omega t)$$

$$\boldsymbol{G'} = \frac{\omega^2 \tau^2}{1 + \omega^2 \tau^2} \cdot \boldsymbol{G}$$

$$\boldsymbol{G}'' = \frac{\omega\tau}{1 + \omega^2\tau^2} \cdot \boldsymbol{G}$$

The Voigt-Kelvin element

 Parallel connection of a Hookean spring and a Newtonian dashpot

Total stress:
$$\sigma = \sigma_E + \sigma_V$$

• Total strain:
$$\varepsilon = \varepsilon_E = \varepsilon_V$$

- Constant strain: $\sigma = G\varepsilon$
- Constant stress:

$$\varepsilon = \frac{\sigma}{G} \left\lfloor 1 - \exp\left(-\frac{t}{\tau}\right) \right\rfloor$$

• Oscillatory strain: $\varepsilon = \varepsilon_0 \exp(i\omega t)$

$$G' = G \qquad G'' = \omega \tau \cdot G$$

Generalized Maxwell model

• For each Maxwell component:

$$\frac{\partial \varepsilon_i}{\partial t} = \left(\frac{1}{G_i}\frac{\partial}{\partial t} + \frac{1}{\eta_i}\right)\sigma_i$$
$$= \left(\frac{\partial}{\partial t} + \frac{1}{\tau_i}\right)\cdot\frac{\sigma_i}{G_i} \qquad \tau_i = \frac{\eta_i}{G_i}$$

$$\mathcal{E}_1 = \ldots = \mathcal{E}_i = \ldots = \mathcal{E}$$

Total stress:

$$\sigma = G_{\infty} \mathcal{E} + \sigma_1 + \ldots + \sigma_i + \ldots$$

Generalized Maxwell model

- Stress relaxation: $\varepsilon = \text{constant } (t \ge 0)$
- Prony series:

$$\sigma = G_{\infty}\varepsilon + \sigma_{1} + \dots + \sigma_{i} + \dots$$
$$= \left[G_{\infty} + \sum_{i>0} \exp\left(-\frac{t}{\tau_{i}}\right) \cdot G_{i}\right] \cdot \varepsilon$$
$$= \left[G_{\infty} + \exp\left[-\left(t/\tau\right)^{\beta}\right] \cdot G_{R}\right] \cdot \varepsilon$$

In real solids, a multitude of microscopic relaxation processes give rise to dispersion of relaxation time (stretched exponential)

Elastic, viscoelastic, and viscous responses

Viscoelastic materials

Mozzarella cheese

Human skin

Turbine blades

Memory foams

Naval ship propellers

Image of Naval ship propellers is in the public domain. Various images © unknown. Lava image © Lavapix on YouTube. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Boltzmann superposition principle

 In the linear viscoelastic regime, the stress (strain) responses to successive strain (stress) stimuli are additive

Boltzmann superposition principle

In the linear viscoelastic regime, the stress (strain) responses to successive strain (stress) stimuli are additive

- Viscoelastic response is history-dependent
- Relaxation function Ψ dictates time-domain response

Stress

$$\sigma = \sum_{i} \Delta \sigma_{i} = \sum_{i} G \Delta \varepsilon_{i} \cdot \Psi(t - t_{i})$$
$$\sigma = \int_{0}^{t} \frac{d\sigma_{i}}{dt} \cdot dt = \int_{0}^{t} G \frac{d\varepsilon}{dt'} \cdot \Psi(t - t') \cdot dt$$

Elastic regime

$$\tau_{re} >> t_{obs}$$

All mechanical and thermal effects only affect atomic vibrations Viscoelastic regime

$$\tau_{re} \sim t_{obs}$$

Glass structure and properties are **history**-**dependent**

Viscous regime

$$\tau_{re} << t_{obs}$$

Structural changes are instantaneous: equilibrium state can be quickly reached

Ergodicity breakdown

Debroah number (DN): $DN = \tau_{re}/t_{obs}$

"... the mountains flowed before the Lord..." Prophetess Deborah (Judges 5:5)

Comparing stress relaxation and structural relaxation

- "Equilibrium" state
 - Zero stress state
- Driving force
 - Residual stress
- Relaxation kinetics
 - Exponential decay with a single relaxation time
 - Relaxation rate scales with driving force

- "Equilibrium" state
 Supercooled liquid state
- Driving force

 \Box Free volume $V_f = V - V_e$

- Relaxation kinetics
 - Exponential decay with a single relaxation time
 - Relaxation rate scales with driving force

Free volume model of relaxation (first order kinetic model)

- Relaxation kinetics at constant temperature $V_f(t) = V(t) - V_e$ $= V_f(t = 0) \cdot \exp(-t/\tau_{re})$ $\Rightarrow \frac{\partial V_f}{\partial t} = -\frac{V_f}{\tau_{re}}$
- Temperature dependence of relaxation

$$\tau_{re} = \tau_0 \exp\left(\frac{\Delta E_a}{k_B T}\right) \implies \frac{\partial V}{\partial t} = \frac{\partial V_f}{\partial t} = -\frac{V_f}{\tau_0} \cdot \exp\left(-\frac{\Delta E_a}{k_B T}\right)$$

Model predicted relaxation kinetics

Model predicted relaxation kinetics

- Fictive temperature T_f: the temperature on the supercooled liquid curve at which the glass would find itself in equilibrium with the supercooled liquid state if brought suddenly to it
- With increasing cooling rate:

 $\Box \ T_{f1} < T_{f2} < T_{f3}$

- A glass state is fully described by thermodynamic parameters (*T*, *P*) and *T_f*
- Glass properties are functions of temperature and T_f (structure)

- Glass property change in the glass transition range consists of two components
 - Temperature-dependent property evolution without modifying glass structure

Volume: $(\partial V / \partial T)_{T_f} = \alpha_{V,g}$ Enthalpy: $(\partial H / \partial T)_{T_f} = C_{P,g}$

□ Property change due to relaxation (T_f change)

Volume: $\left(\frac{\partial V}{\partial T_f}\right)_T = \alpha_{V,e} - \alpha_{V,g}$ Enthalpy: $\left(\frac{\partial H}{\partial T_f}\right)_T = C_{P,e} - C_{P,g}$

Glass property change in the glass transition range consists of two components

$$\frac{dV(T,T_f)}{dT} = \left(\frac{\partial V}{\partial T}\right)_{T_f} + \left(\frac{\partial V}{\partial T_f}\right)_T \cdot \frac{dT_f}{dT}$$
$$= \alpha_{V,g} + \left(\alpha_{V,e} - \alpha_{V,g}\right) \cdot \frac{dT_f}{dt} / \frac{dT}{dt}$$

$$\frac{dH\left(T,T_{f}\right)}{dT} = \left(\frac{\partial H}{\partial T}\right)_{T_{f}} + \left(\frac{\partial H}{\partial T_{f}}\right)_{T} \cdot \frac{dT_{f}}{dT}$$

Predicting glass structure evolution due to relaxation: Tool's equation

Consider a glass sample with Fictive temperature T_f

$$P_{g} - P_{e} = \left(\frac{\partial P_{e}}{\partial T} - \frac{\partial P_{g}}{\partial T}\right) \cdot \left(T_{f} - T\right)$$

Take time derivative:

$$\Rightarrow \frac{dP_g}{dt} = \left(\frac{\partial P_e}{\partial T} - \frac{\partial P_g}{\partial T}\right) \cdot \frac{dT_f}{dt}$$

Assume first-order relaxation: }=

$$\frac{dP_g}{dt} = -\frac{P_g - P_e}{\tau_{re}}$$

$$\frac{dT_f}{dt} = -\frac{T_f - T}{\tau_{re}}$$

Tool's equation

Difficulties with Tool's T_f theory

- Ritland experiment: two groups of glass samples of identical composition were heat treated to obtain the same refractive index via two different routes
 - □ Group A: kept at 530°C for 24 h
 - □ Group B: cooled at 16°C/h through the glass transition range
- Both groups were then placed in a furnace standing at 530°C and their refractive indices were measured as a function of heat treatment time
- Glass structure cannot be fully characterized by the single parameter T_f

J. Am. Ceram. Soc. 39, 403 (1956).

What is relaxation?

Relaxation: return of a perturbed system into equilibrium

- Examples
 - Stress and strain relaxation in viscoelastic solids
 - □ Free volume relaxation in glasses near T_q
 - □ Glass structural relaxation (T_f change)
- Time-dependent, occurs even after stimulus is removed
- Debroah Number: $DN = \tau_{re}/t_{obs}$
 - □ *DN* >> 1: negligible relaxation due to sluggish kinetics
 - □ *DN* << 1: system always in equilibrium
 - DN ~ 1: system behavior dominated by relaxation

Modeling relaxation

Action
Relaxation
$$\frac{\partial P}{\partial t} = -\frac{P - P_e}{\tau_{re}}$$
 Driving
force
Maxwellian relaxation models
 $P(t) = (P_0 - P_e) \cdot \exp\left(-\frac{t}{\tau_{re}}\right) + P_e$
 $P(t) = (P_0 - P_e) \cdot \exp\left(-\frac{t}{\tau_{re}}\right)^{\beta} + P_e$

Boltzmann superposition principle in linear systems

$$\sigma = \mathbf{G} \Psi \left(t - t' \right) \cdot \frac{d\varepsilon}{dt} \cdot \Delta t \qquad \qquad R = IRF \left(t - t' \right) \cdot S \cdot \Delta t$$

$$\sigma = \int_0^t \frac{d\sigma}{dt} \cdot dt = \int_0^t \frac{G\Psi(t-t')}{dt'} \cdot \frac{d\varepsilon}{dt'} dt' \qquad R = \int_0^t IRF(t-t') \cdot S(t') \cdot dt'$$

"The Nature of Glass Remains Anything but Clear"

Free volume relaxation theory

$$\frac{\partial V}{\partial t} = -\frac{V_f}{\tau_0} \cdot \exp\left(-\frac{\Delta E_a}{k_B T}\right)$$

- Tool's Fictive temperature theory
 - \Box Uses a single parameter T_f to label glass structure
 - **Tool's equation (of** T_f **relaxation)**

$$\frac{dT_f}{dt} = -\frac{T_f - T}{\tau_{re}}$$

- Structural relaxation in glass involves multiple structural entities and is characterized by a multitude of relaxation time scales
 - The Ritland experiment

MIT OpenCourseWare http://ocw.mit.edu

3.071 Amorphous Materials Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.