

Juejun (JJ) Hu

After-class reading list

Fundamentals of Inorganic Glasses

🗆 Ch. 18

- Introduction to Glass Science and Technology
 - 🗆 Ch. 9

Glass = fragile?

Material	Iron	Structural steel	Glass fiber
Ultimate tensile strength	35 MPa	550 MPa	4890 MPa

Hron-man Glass

Strength and toughness

- Strength: applied stress a material can withstand
- Toughness: energy absorbed by (work performed to) a material per unit volume before fracture

Theoretical strength of a brittle material

- Theoretical strength is determined by the cohesive force between atoms
- Work W performed to separate the solid equals to the energy of the fresh surfaces created during fracture

Theoretical strength of a brittle material

- Theoretical strength is determined by the cohesive force between atoms
- Work W performed to separate the solid equals to the energy of the fresh surfaces created during fracture

$$\sigma = \sigma_m \sin \frac{\pi \varepsilon}{\lambda}$$

When $\sigma << \sigma_m, \sigma = E\varepsilon$
$$\sigma_m = \frac{\lambda E}{\pi}$$

Work *W* performed:

$$W = V \cdot \int_{0}^{\lambda} \sigma d\varepsilon = \frac{2\lambda^{2} EV}{\pi^{2}} = 2\gamma S$$
$$V = a_{0}S \implies \lambda = \pi \sqrt{\gamma/Ea_{0}}$$
$$\Leftrightarrow \qquad \Rightarrow \sigma_{m} = \sqrt{\frac{\gamma E}{a_{0}}}$$

Theoretical strength of a brittle material

Consider silica glass

□
$$\gamma = 3.5 \text{ J/m}^2$$
, *E* = 70 GPa, *a*₀ = 0.2 nm

$$\sigma_m = \sqrt{\frac{\gamma E}{a_0}} = 35,000 \text{ MPa}$$

MaterialGlassSilica glassSilica nanowireUltimate tensile strength~ 30 MPa110 MPa26000 MPa†

Practical strength of engineering materials is much less than their theoretical strength

† "The Ultimate Strength of Glass Silica Nanowires," Nano Lett. 9, 831 (2009).

Griffith's theory

 Strength of practical materials is limited by stress concentration around tiny flaws (Griffith cracks)

Griffith's theory

 Strength of practical materials is limited by stress concentration around tiny flaws (Griffith cracks)

Stress concentration factor:

$$\frac{\sigma_{\max}}{\sigma_{\infty}} = 2\sqrt{\frac{a}{\rho}} = 2\sqrt{\frac{a}{a_0}}$$

Fracture strength of a flawed material:

$$\sigma_f = \frac{1}{2} \sqrt{\frac{\gamma E}{a}}$$

Griffith's theory

 Strength of practical materials is limited by stress concentration around tiny flaws (Griffith cracks)

In flawed silica glass:

$$\sigma_f = \frac{1}{2} \sqrt{\frac{\gamma E}{a}} = 110 \text{ MPa}$$

 $\Rightarrow a = 5 \ \mu m$

A. Griffith, "The Phenomena of Rupture and Flow in Solids," *Philos. Trans. Roy. Soc. London, A* **221**, 163 (1921).

Visualizing Griffith cracks in glass

Figures removed due to copyright restrictions. See Figure 4(a,b,c,f): Han, K., M. Ciccotti, and S. Roux. "Measuring Nanoscale Stress Intensity Factors with an Atomic Force Microscope." Europhys. Lett. 89, No. 66003 (2010).

AFM phase image

Figure © John Wiley & Sons, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Displacement field near a crack tip

Water condensation at crack tip

Europhys. Lett. **89**, 66003 (2010); *J. Am. Ceram. Soc.* **94**, 2613 (2011).

Stress intensity factor and fracture toughness

Stress intensity factor (tensile):

 $K_I = \sigma_{\infty} \sqrt{\pi a}$ $K_{Ic} = \sigma_f \sqrt{\pi a}$ critical stress intensity factor

Strain energy release rate:

 $G_I = K_I^2 / E$ $G_{Ic} = K_{Ic}^2 / E$ work of fracture

Fracture condition:

 $K_I > K_{Ic}$ $G_I > G_{Ic}$

 K_{Ic} is a material constant and is independent of crack length

Intrinsic plasticity in amorphous metals

- Lack of global plasticity
- Intrinsic plasticity
- When G/K < 0.42: plastic; G/K > 0.42: brittle (K: bulk modulus)

Figures removed due to copyright restrictions. See Figure 1: Lewandowski, J.J., W.H. Wang, and A.L. Greer. "Intrinsic Plasticity or Brittleness of Metallic Glasses." Phil. Mag. Lett. 85 (2006): 77-87.

Phil. Mag. Lett. 85, 77 (2006)

Brittle fracture of glass

When a crack exceeds the critical length, the crack becomes unstable and propagates catastrophically through the material

Crack propagation velocity:

1540 m/s

J. Am. Cer. Soc. 22, 302-307 (1939).

Glass cracking at 231,000 fps

Image © Vision Research. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. [Watch on YouTube].

Conchoidal fracture

Image from "Fracture analysis, a basic tool to solve breakage issues"

Static fatigue in glass

 Under constant load, the time-to-failure varies inversely with the load applied

Sub-critical crack growth: crack length increases over time even when $\sigma_{\infty} < \sigma_{f}$

Stress corrosion

- Reaction at crack tip: -Si-O-Si- + $H_2O \rightarrow$ -Si-OH + HO-Si-
- Higher alkaline content generally reduces fatigue resistance
- Higher susceptibility to stress corrosion in basic solutions
- Thermally activated process

J. Non-Cryst. Solids **316**, 1 (2003) J. Am. Ceram. Soc. **53**, 544 (1970)

Fracture toughness measurement

- ASTM Standard E1820-15: Standard Test Method for Measurement of Fracture Toughness
- Standard specimen geometries to obtain load-displacement plot

Compact tension specimen

Single edge-notched bend specimen (for three-point bending) Middle-cracked tension specimen

Eng. Fract. Mech. 85, 1 (2012)

Indentation of glass samples

- Mechanical properties evaluated through indented crack size or crack-opening displacement based on empirical equations
- Poor correlation with conventional test results can be a concern

J. Mech. Behav. Biomed. Mater. 2, 384 (2009)

Indentation of glass samples

Vickers indentation of soda-lime glass

Figures removed due to copyright restrictions. See Figure 4: Cook, R.F. and G. M. Pharr. "Direct Observation and Analysis of Indentation Cracking in Glasses and Ceramics." *J. Am. Ceram. Soc.*73 (1990): 787-817.

J. Am. Ceram. Soc. 73, 787 (1990)

Fracture statistics

- Experimental results of fracture strength can often be described by the Weibull distribution
- The fraction F of samples which fracture at stresses below σ is given by:

$$F = 1 - \exp\left[-\left(\frac{\sigma}{\sigma_0}\right)^m\right]$$

m: Weibull modulus

- Probability density $dF/d\sigma$
 - Probability of samples
 fracture at stress σ

Weibull plot

Ln (tensile stress)

Summary

- Theoretical and practical strengths of materials
 - Practical strength of brittle materials is usually much lower than the theoretical strength due to the presence of defects
 - Oxide glasses are extremely sensitive to surface defects
 - Intrinsic ductility in select BMGs contributes to high toughness
- Basics of fracture mechanics
 - □ Griffith crack theory
 - □ Fracture toughness $K_{Ic} = \sigma_f \sqrt{\pi a} = \frac{1}{2} \sqrt{\pi \gamma E}$
- Fatigue and stress corrosion
- Fracture toughness measurement
- Fracture statistics: Weibull plot

MIT OpenCourseWare http://ocw.mit.edu

3.071 Amorphous Materials Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.