

Lecture 15 October 14, 2009

Introduction to Crystallography

Images by Inductiveload at Wikipedia.

The Big Picture

electronic structure

bonding state of aggregation

Bohr atom **Bohr-Sommerfeld** quantum numbers Aufbau principle multielectron atoms Periodic Table patterns octet stability

primary:	gas
1 ionic	liquid
2 covalent	solid
3 metallic	
4 van der Waals	3.091 🙂

secondary: **1** dipole-dipole **2** London dispersion **3** hydrogen

solid: that which is dimensionally stable, i.e., has a volume of its own

classifications of solids: **1** bonding type atomic arrangement 2

classifications of solids:bonding typeatomic arrangement

2 classifications of solids by atomic arrangement

atomic arrangement order name regular long-range crystalline "crystal"

ordered

disordered random* short-range* amorphous "glass"

Early Crystallography

Robert Hooke (1660): cannon balls

- crystal must owe its regular shape to the packing of spherical particles (balls)

Niels Steensen (1669): quartz crystals

- all crystals have the same angles between corresponding faces

Christian Huygens (1690): calcite crystalsdrawings of atomic packing & bulk shape

white Sn	
1.40	7.03
1.62	290.4
16.31	301.25
3.67/7.7	0.228
11.5 ^{0°C}	0.668

Image by MIT OpenCourseWare.

Photo by Will Wysong on Flickr.

Early Crystallography (continued)

René-Just Haüy (1781): cleavage of calcite

- common shape to all shards: rhombohedral
- mathematically proved that there are only
 7 distinct space-filling volume elements

The formation of the second systems

~7 distinct shapes of "milk cartons"

August Bravais (1848): more math

- mathematically proved that there are 14 distinct ways to arrange points in space

F F 14 Bravais lattices

		4 Lattice Types			
Bravais Lattice	Parameters	Simple (P)	Volume Centered (I)	Base Centered (C)	Face Centered (F)
Triclinic	$a_1 \neq a_2 \neq a_3$ $\alpha_{12} \neq \alpha_{23} \neq \alpha_{31}$				
Monoclinic	$a_1 \neq a_2 \neq a_3$ $\alpha_{23} = \alpha_{31} = 90^{\circ}$ $\alpha_{12} \neq 90^{\circ}$				
Orthorhombic	$a_1 \neq a_2 \neq a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} = 90^{\circ}$				
Tetragonal	$a_1 = a_2 \neq a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} = 90^{\circ}$				
Trigonal	$a_1 = a_2 = a_3 \\ \alpha_{12} = \alpha_{23} = \alpha_{31} < 120^\circ$				
Cubic	$a_1 = a_2 = a_3 \\ \alpha_{12} = \alpha_{23} = \alpha_{31} = 90^{\circ}$				
Hexagonal	$a_1 = a_2 \neq a_3$ $\alpha_{12} = 120^{\circ}$ $\alpha_{23} = \alpha_{31} = 90^{\circ}$				

7 Crystal Classes

Х

Table I. The Seven Crystal Systems

System	Parameters	Interaxial Angles
Triclinic	a ≠ b ≠ c	$\alpha \neq \beta \neq \gamma$
Monoclinic	a ≠ b ≠ c	$\alpha = \gamma = 90^{\circ} \neq \beta$
Orthorhombic	a ≠ b ≠ c	$\alpha = \beta = \gamma$
Tetragonal	a = b ≠ c	$\alpha = \beta = \gamma$
Cubic	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$
Hexagonal	a = b ≠ c	α = β = 90°, γ = 120°
Rhombohedral	a = b = c	$\alpha = \beta = \gamma \neq 90^{\circ}$

Courtesy of National Academy of Sciences, U. S. A. Used with permission. Source: Caspar, Donald L. D., and Eric Fontano. "Five-fold Symmetry in Crystalline Quasicrystal Lattices." *PNAS* 93 (December 1996): 14271-14278. Copyright © 1996 National Academy of Sciences, U.S.A.

Averill, B., and P. Eldredge. Chemistry: Principles, Patterns, and Applications. Flat World Knowledge, 2011. ISBN: 9781453331224.

(c) Face-centered cubic

Image by Eloy at Wikipedia.

© Pearson. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse. Source: Fig. 10.24 in McMurry, John, and Robert C. Fay. *Chemistry*. 4th ed. Upper Saddle River, NJ: Pearson/Prentice-Hall, 2004. ISBN: 0131402218.

© Pearson. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse. Source: Fig. 10.24 in McMurry, John, and Robert C. Fay. *Chemistry*. 4th ed. Upper Saddle River, NJ: Pearson/Prentice-Hall, 2004. ISBN: 0131402218.

© Pearson. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse. Source: Fig. 10.24 in McMurry, John, and Robert C. Fay. *Chemistry*. 4th ed. Upper Saddle River, NJ: Pearson/Prentice-Hall, 2004. ISBN: 0131402218.

© Pearson. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse. Source: Fig. 10.24 in McMurry, John, and Robert C. Fay. *Chemistry*. 4th ed. Upper Saddle River, NJ: Pearson/Prentice-Hall, 2004. ISBN: 0131402218.

All M. C. Escher works © 2010 The M. C. Escher Company – The Netherlands. All rights reserved. www.mcescher.com.

All M. C. Escher works © 2010 The M. C. Escher Company – The Netherlands. All rights reserved. www.mcescher.com.

All M. C. Escher works © 2010 The M. C. Escher Company – The Netherlands. All rights reserved. www.mcescher.com.

(a) Simple cubic

Averill, B., and P. Eldredge. *Chemistry: Principles, Patterns, and Applications*. Flat World Knowledge, 2011. ISBN: 9781453331224.

All M. C. Escher works © 2010 The M. C. Escher Company – The Netherlands. All rights reserved. www.mcescher.com.

All M. C. Escher works © 2010 The M. C. Escher Company – The Netherlands. All rights reserved. www.mcescher.com

All M. C. Escher works © 2010 The M. C. Escher Company – The Netherlands. All rights reserved. www.mcescher.com

Unit Cell Volume

Lattice Points Per Cell

Nearest Neighbor Distance

Number of Nearest Neighb

Second Nearest Neighbor

Number of Second Neighb

a = f(r)	2 r	4r/√3	2√2r
or 4r =	√4 a √3 a	√ 2 a	
packing density	0.5	0.68	0.74

Averill, B., and P. Eldredge. Chemistry: Principles, Patterns, and Applications. Flat World Knowledge, 2011. ISBN: 9781453331224.

Image by MIT OpenCourseWare. Adapted from Fig. 5 in Aquaro, Donato. "Thermal Mechanical Analysis of a Solid Breeding Blanket." Fusion Engineering and Design 69 (2003): 511-518. Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Houses at L'Estaque Georges Braque 1908

Courtesy of Rod Nave/HyperPhysics. Used with permission.

Crystal	n _o	n _e
Tourmaline	1.669	1.638
Calcite	1.6584	1.4864
Quartz	1.5443	1. 5534
Sodium Nitrate	1.5854	1.3369
Ice	1.309	1.313
Rutile (TiO2)	2.616	2.903

Colored Golds: FCC with zest

pure Au yellow yellow Cu_(low) pink Cu_(high) Ni white Al purple blue In ()r green

MIT OpenCourseWare http://ocw.mit.edu

3.091SC Introduction to Solid State Chemistry Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.