to parents Welcame to 3.091

Lecture 16 October 16, 2009

Crystallographic Notation \& X-Rays

Averill, B., and P. Eldredge.
Flat World Knowledge, 2011. ISBN: 9781453331224.

TABLE II. Characteristics of Cubic Lattices

	Simple Body-Centered		Face-Centered
Unit Cell Volume	a^{3}	a^{3}	a^{3}
Lattice Points Per Cell	1	2	4
Nearest Neighbor Distance	a	$\frac{a \sqrt{3}}{2}$	$\frac{\mathrm{a}}{\sqrt{2}}$
Number of Nearest Neighbors	6	8	12
Second Nearest Neighbor Distance	$\mathrm{a} \sqrt{2}$	a	a
Number of Second Neighbors	12	6	6
$a=f(r)$	2r	4r/V3	$2 \sqrt{ } 2 r$
or $4 \mathrm{r}=$	$\sqrt{ } 4$ a	$\sqrt{ } 3 \mathrm{a}$	$\sqrt{ } 2 \mathrm{a}$
packing density	0.52	0.68	0.74

Crystallographic Notation

position: $\mathrm{x}, \mathrm{y}, \mathrm{z}$, coordinates, sep ${ }^{\mathrm{d}}$ by commas, no enclosure O: $0,0,0$ A: $0,1,1 \quad \mathbf{B}: 1,0,1 / 2$
direction: move coordinate axes so that line passes through origin

- define vector from \mathbf{O} to point on the line
- choose smallest set of integers
- no commas, enclose in brackets, clear fractions
$\xrightarrow[O B]{ } 10 \frac{1}{2}$ clear fractions [201]
$\xrightarrow[A O]{ }$ [011] minus denoted by macron
can denote entire family of directions by carats <>
e.g., all body diagonals: <111> = [111], [111], [111], [111], etc.
all cube edges: <001>
all face diagonals: <011>
all body diagonals: <111>
plane: Miller ${ }^{1}$ indices - recall equation of a plane in space

$$
\begin{gathered}
\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1, \text { where } a, b, c \text { are intercepts of the plane with the } \\
x, y, z \text { axes, respectively }
\end{gathered}
$$

- let $h=\frac{1}{a}, k=\frac{1}{b}$, and $l=\frac{1}{c}$, so that $h x+k y+l z=1$
- no commas ${ }^{2}$, enclose in parentheses $(h k l)$
- can denote entire family of planes by braces \{ \} e.g., all faces of unit cell: $\{001\}=(001),(00 \overline{1}),(\overline{1} 00),(0 \overline{1} 0)$, etc.
- cool property: $(h k l) \perp[h k l]$

[^0]Intercept at ∞

$$
\left(\frac{1}{2}, 1, \infty\right)
$$

Intercept at ∞

Miller indices ($h k l$):

$$
\frac{1}{1 / 2} \frac{1}{1} \frac{1}{\infty}
$$

(210)

Intercept at ∞

Miller indices ($h k l$):

$$
\frac{1}{1 / 2} \frac{1}{1} \frac{1}{\infty}
$$

(210)

Image by MIT OpenCourseWare.

(111)

Move the origin out of the plane

(111̄)
[111̄]

(111̄)

Image by MIT OpenCourseWare.

$$
\mathrm{a}=\mathrm{b}=\mathrm{c}=" \mathrm{a} " \quad \mathrm{~d}_{020}=\frac{\mathrm{a}}{\left(0^{2}+2^{2}+0^{2}\right)^{1 / 2}}=\frac{\mathrm{a}}{2}
$$

(010)

(020)

$$
d_{111}=\frac{a}{\left(1^{2}+1^{2}+1^{2}\right)^{1 / 2}}=\frac{a}{\sqrt{3}}
$$

(111)

Ionization Energies (eV)

	I	II	III	IV	V	VI	VII	
H	14	1						
He	25	55	4		$\mathrm{E}_{1}=$	$-\mathrm{KZ}^{2}$		
Li	5	76	123	9				
Be	9	18	154	218	16			
B	8	25	38	260	341	25		
C	11	24	48	64	393	491	36	
N	14	30	48	78	98	523	668	49

Photos removed due to copyright restrictions. Please see Farmelo, Graham. "The Discovery of X-Rays." Scientific American 273 (November 1995): 86-91.

$$
0
$$

First
Nobel Prize in Physics (1901)

MIT OpenCourseWare
http://ocw.mit.edu
3.091SC Introduction to Solid State Chemistry

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ William Hallowes Miller, British mineralogist, 1839
 ${ }^{2}$ plane must not include the origin

