Session \#35: Homework Solutions

Problem \#1

(a) For each of the following Ag-Cu alloys state all phases present at the specified compositions and temperatures. Phase diagram given below.
(i) $\mathrm{C}=20$ atomic per cent $\mathrm{Cu}, \mathrm{T}=900^{\circ} \mathrm{C}$
(ii) $\mathrm{c}=20$ atomic per cent $\mathrm{Cu}, \mathrm{T}=800^{\circ} \mathrm{C}$
(iii) $\mathrm{c}=20$ atomic per cent $\mathrm{Cu}, \mathrm{T}=700^{\circ} \mathrm{C}$
(iv) $\mathrm{c}=5$ atomic per cent $\mathrm{Cu}, \mathrm{T}=700^{\circ} \mathrm{C}$
(v) $\mathrm{c}=80$ atomic per cent $\mathrm{Cu}, \mathrm{T}=800^{\circ} \mathrm{C}$
(b) For the $\mathrm{Ag}-\mathrm{Cu}$ alloy, $\mathrm{c}=70$ atomic per cent copper, calculate the relative amounts of all phases present at $\mathrm{T}=600^{\circ} \mathrm{C}$.

Fig. 11. Ag-Cu
© source unknown. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Solution

(a) (i) all liquid
(ii) liquid +Ag -rich solution of $\mathrm{Ag}-\mathrm{Cu}$ (denoted $\alpha \mathrm{Ag}$)
(iii) Ag-rich solid solution of Ag - Cu (denoted $\alpha \mathrm{Ag}$) +Cu -rich solution of $\mathrm{Ag}-\mathrm{Cu}$ (denoted $\alpha \mathrm{Cu}$)
(iv) Ag-rich solid solution of $\mathrm{Ag}-\mathrm{Cu}$ (denoted $\alpha \mathrm{Ag}$)
(v) liquid + Cu-rich solution of Ag -Cu (denoted $\alpha \mathrm{Cu}$)
(b) $\%(\mathrm{Cu}-$ rich solution of $\mathrm{Ag}-\mathrm{Cu})=\frac{70-5}{98-5} \times 100 \%=70 \%$
$\%(A g-$ rich solution of $\mathrm{Ag}-\mathrm{Cu})=\frac{98-70}{98-5} \times 100 \%=30 \%$

Problem \#2

(a) For each of the following $\mathrm{Pb}-\mathrm{Sn}$ alloys state all phases present at the specified compositions and temperatures. Phase diagram given on the following page.
(i) $\mathrm{c}=10$ atomic per cent $\mathrm{Pb}, \mathrm{T}=300^{\circ} \mathrm{C}$
(ii) $\mathrm{c}=10$ atomic per cent $\mathrm{Pb}, \mathrm{T}=200^{\circ} \mathrm{C}$
(iii) $\mathrm{c}=10$ atomic per cent $\mathrm{Pb}, \mathrm{T}=100^{\circ} \mathrm{C}$
(iv) $\mathrm{c}=90$ atomic per cent $\mathrm{Pb}, \mathrm{T}=200^{\circ} \mathrm{C}$
(v) $\mathrm{c}=60$ atomic per cent $\mathrm{Pb}, \mathrm{T}=200^{\circ} \mathrm{C}$
(b) For the $\mathrm{Pb}-\mathrm{Sn}$ alloy, $\mathrm{c}=60$ atomic per cent lead, calculate the relative amounts of all phases present at $\mathrm{T}=200^{\circ} \mathrm{C}$.

Fig. 601. Pb-Sn
© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Solution

(a) (i) all liquid
(ii) liquid +Sn -rich solution of $\mathrm{Sn}-\mathrm{Pb}$
(iii) (Sn -rich solid solution of $\mathrm{Sn}-\mathrm{Pb}$) $+(\mathrm{Pb}$ - rich solid solution of $\mathrm{Sn}-\mathrm{Pb}$)
(iv) Pb -rich solid solution of $\mathrm{Sn}-\mathrm{Pb}$
(v) liquid $+(\mathrm{Pb}-$ rich solid solution of $\mathrm{Sn}-\mathrm{B})$
(b) $\%$ liquid $=\frac{73-60}{73-31} \times 100 \%=31 \%$
$\% ~(\mathrm{~Pb}$ - rich solid solution of $\mathrm{Sn}-\mathrm{Pb})=\frac{73-60}{73-31} \times 100 \%=31 \%$

MIT OpenCourseWare
http://ocw.mit.edu

3.091SC Introduction to Solid State Chemistry

 Fall 2009For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

