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Gas is heating in a rigid container from to

(First Law)

(a) Since only PV work is possible & since the container is rigid.

46.75

(b) Entropy change:

(for reversible heating)

since

or,

0.107
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Calculate entropy change by going from 1 to 2 according to:
( ) A reversible isothermal compression
( ) Followed by an isobaric heating

Entropy change

( )

or

Entropy change

(isobaric heating)

Now for the total process
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(a)

H =-41.95kJ

(b) System Fe+ice water is adiabatic

, mass of ice transformed

m =223g

Diatomic ideal gas = and =
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Assume the process is reversible.

There are two methods one can use to find the work done along this path. For both approaches it will be useful to
find for the starting and ending points. We are given the starting pressure, volume and temperature and the
final pressure. From this we can calculate the final volume and temperature.

(with )

The final temperature can be found with a similar relation

(with )

It will also be useful to calculate the number of moles from giving In summary the
conditions at each point are

Start with

with

So,

Inserting in the values for we get

Start with the known fact the the internal energy of an ideal gas is only a function of temperature.

However, since this is an adiabatic path, and the work done is simple
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This process is at constant pressure, so the work is given by

We just have to fine That can be done easily by using the equation of state of an ideal gas along an isotherm

So,

The total work done is then

-

Function 1:
(1) Integrate along (

(2) Integrate along (

Function 2:
(1) Integrate along (

2

(2) Integrate along (

2

Since function 2 is path independent it is an exact differential.
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This is an ideal gas so along an isothermal path.

(a)

,

(b)

(c)

For an ideal gas at constant temperature ( )
Also, when
Therefore

(d)
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(a) Work done in the process is:

Define water as the system

Initial State = Liquid

Final State = Vapor

So we write

(Since is constant)

Since the specific volume of a vapor is much larger than for a liquid

This is about 7.5% of the heat of evaportation

(b)

Conclusion: The heat one has to transfer to water to evaporate it is partly used for increasing the internal energy of
water (2094 breaking bonds) but aslo for the work required by the vapor expansion.
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Given:

Need to know how many moles of gas:

(isothermal)

(isobaric)

with for monoatomic ideal gas

(reversible adiabatic)

So the total work done is

(i) The amount of work done by the gas is zero, since the gas does no work on the surrouindings outside of the
chamber. The expression cannot be applied since the process is not reversible.

(ii) The walls of the chamber are insulating, thus and from (i) Thus

(iii) For an ideal gas is only a function of temperature. Since for a free expansion in an insulated chamber

(iv) For a non-ideal gas where , will change after a free expansion in an insulated chamber since
changes and
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V m V
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= 15 = 2
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=

= =
15 1

2

= 7 5

= 0 08205 1 = 1000

= =
15 1000

0 08205 298

= 613 5

=

= ln = 8 314 613 5 298 ln
7 5

1

= 3006

(Most gasses at low pressures can be well approximated as being ideal gasses)

(v) If now the walls of the chambers conduct heat, for an ideal gas is still true. The initial and final
states are in equilibrium with the environment. Thus

(vi) For non-ideal gases since and V changes.

(a)
(b)
(c)

Given information

(a) Find the final volume after the expansion

Finding the number of moles, , will be useful for parts b & c

,

(b) Find the work done if the process is isothermal

(c) Find the work in the multi-step process
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15
= 168

= 613 3 29 (298 168 )

= 2313

= ( + ) = (0 + 2313 )

= 2313

= =

= +

=
= 0

=

Two parts:
(I) Adiabatic expansion from 1 to 2
(II) Heating at constant P from 2 to 2

Since state 1 and 2 are at the same temperature and for an ideal gas is only a function of temperature,
and

So we can calculate ’s or ’s. Since (adiabatic process) let’s calculat

moles,

Need to find

Now for

moles

So,

( positive constant)

(First Law)

Along a reverisble path, when only p-V work is possible.
Along a reversible adiabatic path, and therefore
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(1)

Going back to equation 1

After intergration

constant

new constant

= even newer constant

(a) Using the first law

(b) Chack to see if the second law is satisfied

But has to be zero since we are operating at steady state
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� = 0
�

= = 773
2

100
= 253

� = =
7

2
8 314 ln

388

253

� = 12 4

(a)

Since the process is adiabatic,

(b)

since this process is reversible and adiabatic
at constant pressure, temperatre varies

What is though? The temperatre that would be reached if expansion was reversible.

In case (b) extra work is done on the gas so that its internal energy will remain higher than in (a)

(a) Total amount of energy required
Necessary heat input is the total enthalpy change of the material (since is constat)
Determined by the final and initial state
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Enthalpy change is only due to the 10 L (the 50 L remains in exactly the same state)

(b) Entropy change
Again,entropy change is soley determined by the final and initial state

The second step where gives

and the fourth step

Thus

or

and
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By drawing the heat from a heat souce at one may ths produce mechanical work in the amount of

if the rest of the energy, can be disposed of as heat to a heat sink at

There is no heat flow into the environment, so

But for the system (the gas)
The gas goes from state 1 at , , to a state 2 at , , ( ) with
To compute the we need to how the entropy changes with pressure (or volume) at constant T

(Maxwell Relation)

and for an ideal gas

since

Since the process is irreversible

To calculate for any given a value at some it is sitable for this system to follow
the path sketched below.
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( ) ( ) = ( ) =

= 0

� = ( ) ( ) =

( )

=

=

� =

� =
( 1)

1
=
( 1)

1 1

� = ( ) ( ) = 1 =

� = ( ) ( ) = ( ) + 1 =

2 + 3

=

= 2 = 20

= 0 = 0

� =

=

V , P V , P

dU 
Q

U U P , V U P , V Q A P P

P V , P V, P V , P V, P

P V PV P P
V

V

U P , V U P , V A Pr P r

V , P V, P

Q

U U P, V U P , V P dV

P V V, P .

P V PV

P
PV

V

U PV
dV

V

U
PV

� V

PV

� V V

U U P, V U P , V r r

U U P, V U P , V A Pr P r r

NH N H

P , n

P P P atm

dV W

U Q

U H

U H PV

First go from (i.e. constant volume)

A constant colume, if only P-V work is possible

is unknown, but we do know because of the path we chose from ( that ( and ( are
connected by a reversible adiabat. Therefore,

or

So,

(with )

Second go from

Along the reversible adiabat and therefore

with and representing values along the adiabat going through To calaculate this integral use

So,

(with )

Combining the first and second step

(with )

The reaction at 1200K is

T and V are constant but increases by a factor of 2 in the reaction. Therefore

(b) Heat flow

The system is underconstant volume ( ) so and

We can compute from because
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Problem 3.2

� � �

� �

⇒

�

�

�
�

�

J
mole

reaction

T

v N v H

a
reaction

v N v H

p v

a

J
mole

J
mole K

a

o c

o

f

o

f

f

o
o

o

o c
f

f

c
c o

f

o c v f o

f c c o

U H PV H nRT H RT n

H
kJ

mole
n moles

U
J

mole
.

J

mole K
K

U Q

U

U c , c , dT

T
U

c , c ,
c c R

T
.

T K

n n

P
P
T
T
V
V

n
P V

RT

n n
P V

RT

V
n RT

P

U n n c T T

U Q W W Q

W P V n RT

� = � �( ) = � �( ) = � �

� = 87 � = 2

� = 87000 (2) 8 314 (1200 )

� = = 67046

= � = 0

� + ( +3 ) = 0

= 1200
�

+3
=

= 1200
67046

4 24 686

= 521

=

+ =

=

� = ( + ) ( )

� = + = = 0

= =

and

(c) System is adiabtic and under constant volume

So,

use

The system cools down which is expected given that the reaction is endothermic.

We can define the system as the gas in the tank ( moles) and the gas that will be squeezed into the tank (
moles). It will helpful to define some variables

= The initial pressure in the tank
= The external pressure pushing gas in
= The initial temperature of the gas
= The final temperature of the gas (what we want to solve for)
= The volume of the tank
= The volume of the gas pushed in

We can write the following relationships

Since this is an ideal gas we know that the internal energy change is only a function of temperature, given by

Givem that the process is adiabatic (isolated),

( )
But for this case we know that
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2 1 1 1
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1 1 1

Problem 3.3

Problem 3.4

c o o c v f o

c o
f

f
v f o

o
f

f

o

o

f

f
v f o

f o o f f v f o

f o v f o f v

f
f o v

o f v

v f

f
v

f

o

o

o

o

o

o

o

v

= ( + ) ( )

= ( )

= ( )

= ( )

( + ) = ( + )

=
( + )

+

=

=
298 1 ( + )

(0 5 + 1 )
=
7

6
298

= 347 6

+ �

= �

� = �

= � + �

=

= � +�( )

= �

�

= + = = 0

=

= ( )

=

n RT n n c T T

n RT
P V

RT
c T T

RT
P V

RT

P V

RT

P V

RT
c T T

P RT P RT P c T T

P T R c T P R P c

T
P T R c

P R P c

c R T

T
R R

. R c

T . K

A B AB V Q.
P .

P

w P V

U Q P V

Q U P V

P
P

P P

Q U PV

Q H

H

U U Q w w Q

U U P V

U U nc T T

P V nRT

or the external pressure (which is constant) times the volume of gas pushed in. Now we can just work through
eliminating variables to find the final temperature.

Treating air as a diatomic ideal gas, we can use and solve for

Assume that the volume change resulting from the reaction is and the heat of reaction is
During the reaction, the system will perform work against the environment which has a constant pressure Since
the pressure of the environment is constant, the external work done by the system is

Using the first law

In the initial and final states of the reaction (both equilibrium states), the pressure of the gas has to equal
(otherwise they wouldn’t be equilibrium states). Therefore if is the pressure of the gas

or

where is the difference of enthalpies in the initial and final states.

Closed system solution
System is gas flowing into the tank

( (adiabatic))

For an ideal gas,
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�
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2 1 1

2 1

2

1

2

1
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2

1

1

1

1

1

1 1

1 1

v

v v p

p

v

i i f i f f

initial initial

in f

i f in in in

f i in in

v f i i

f
p

v
i

II

tot I II

I II

II II v II

I I v I

I

I I

I

II I

I II

II I

v II v

II

nc T T nRT

c T R c T c T

T
c

c
T

H m U U U m

U m

m m

H U U P V

U U P V

c T T RT

T
c

c
T

T

T

P

P

T

T K

T

U U U

U U

U n c T T

U n c T T

n

n
PV

RT
n

n

P

T

T

P

atm

atm

K

K
.

n n n . . n

U U

U U

. n c T . n c

T K

S T P

( ) =

= ( + ) =

=

= =

= 0 = 0

=

= = +

=

( ) =

=

=

= 300
5

10

= 246

� = � +� = 0

� �

� = ( )

� = ( )

=

= =
5

10

300

246
= 0 61

= 1 = (1 0 61) = 0 39

� +� = 0

� = �

0 39 ( 300) = 0 61 (246 300)

= 384

So,

Open system solution
System is the tank

because

(a) Gas in tank I is undergoing an adiabatic reversible expansion

(b) Try to get from the fact that

because the total system is isothermal. is the internal energy change of gas that remains in I and is the
internal energy change of gas that ends up in tank II.

need to find

now from

(c) Entropy change varies with and
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LEVEL 4 PROBLEMS

� � � �
� � � � � �

� � � � ��

� � � � ��1

1

1

1 1 1 2 2 2

1 2

1 2

1

2

1 2

1 1 1 1 2

2 2 2

P T

P

p

T P

p

I

II p
II

o

II

o

o o

II

II

II
II II II II

o

J
K mole

f f f f f f

f f

f

= +

= = =

=

= 0

� = ln ln

= 10 = 300

= 0 39

= 384

= = = 5

� = 0 39
7

2
ln
384

300
ln

5

10

� = 5 05

= + = 0

( )

= + = 0

( )

= 0

= 0

=

= = +

=

dS
∂S

∂T
dT

∂S

∂P
dP

∂S

∂T

c

T

∂S

∂P

∂V

∂T

R

P

dS
c

T
dT

R

P
dP

dS

S n c
T

T
R

P

P

P atm, T K

n .

T K

P
n RT

V

n

n

T

T
atm

S . n R R

S . n

T , P , V T , P , V

dU dU dU

U V, S

dS dS dS

S U, S

dS

dS

dV dV

dU P dV P dV

dU P dV

and

For the gas remaining in tank I as it is undergoing an adibatic reversible expansion.

For the gas ending up in tank II

(per mole of gas initial in tank I)

This is a very tricky question which is why it is alone in Level 4.

First let’s determine the equilibrium conditions. Assume that the system has some how reached equilibirum with
final values for compartment 1 and for compartment 2. We can ssk what criteria must there
variable satisfy for the system to be in equilibrium.

Well we know that for any reversible change around equilibrium

i.e. must be minimal at equilibrium, and

i.e. must be maximal at equilibrium.

Since there is no heat flow between compartments and between the chamber and the environment (since all walls
are adiabatic)

So at equilibrium, the only reversible changes we can make are in the volume of the compartments, i.e.

Then we can write (for a reversible change
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f f

f f

f f

o o

f f

�
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�

�

⇒ �
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�
⇒

= 1+ 2 = ( ) = 0

=

= 0 = 0 = 0

= = = =

= )

=

= =

= 0 = =

=

=

=

=

1 2 2

2

1 2

1 2

1 2

1 2 1 2 1 2

1 2

1

1 1 1

2 2 2 2 1

1 2

1 1 2 1

1 2

1 2

dU dU dU P P dV

dV ,

P P

dS dS dU
T T

T T , T T , P P , n n

P P .

dV

dU P dV

dU P dV P dV

dU dU dU

P dV P dV

P P

P P

since this should hold for arbitrary

i.e. equilibrium is characterized by mechanical equilibrium.

NOTE: Since and , the equilibrium condition that does not yield any information about
the final temperatures and . This means that the final temperatures of this system depend on the path followed
by the system to attain equilibrium.

The question remains: can we obtain equilibrium from the initial state and
by following a reverible path?

The answer is: probably not.

One candidate reversible path is to allow the piston to very slow move until the equilibrium pressures are attained
(i.e. This path, however, cannot proceed reversible for the following reason:

Assume that is can proceed reversibly. Then an infinitesimal change in the volume of compartment 1 by will
result in an increase of the internal energy of compartment one by

The change in internal energy of compartment 2 is

But since both compartments are adiabatically sealed from the environment,

or

or

But this is not true except in the final equilibrium state. In the initial state by assumption.

Therefore the suggested path cannot proceed reversibly. The suggest path must be accompanied by dissipation
(through friction between the piston and the walls for example). This dissipation will be accompanied by a production
of heat. We cannot predict a-priori how much of that heat evolves to compartment 1 or compartment 2 though.
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