Problem Set 4
Solutions
3.20 MIT
Dr. Anton Van Der Ven
Fall 2002

Problem 1-22

For this problem we need the formula given in class (McQuarie 1-33) for the energy states of a particle in an three-dimensional infinite well, namely

$$
\varepsilon_{n_{x} n_{y} n_{z}}=\frac{h^{2}}{8 m a^{2}}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right), n_{x}, n_{y}, n_{z}=1,2 \ldots
$$

Now we can make a table

n_{x}	n_{y}	n_{z}	$n_{x}^{2}+n_{y}^{2}+n_{z}^{2}$	Degeneracy
1	1	1	3	1
1	1	2	6	
1	2	1	6	3
2	1	1	6	
1	2	2	9	
2	1	2	9	3
2	2	1	9	
1	1	3	11	
1	3	1	11	3
3	1	1	11	

[^0]Start with the differential form for E

$$
\begin{aligned}
d E & =T d S-p d V \\
\left(\frac{\partial E}{\partial V}\right)_{T} & =T\left(\frac{\partial S}{\partial V}\right)_{T}-p
\end{aligned}
$$

We can use a Maxwell relation on $\left(\frac{\partial S}{\partial V}\right)_{T}$ from $F(T, V)$

$$
\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial p}{\partial T}\right)_{V}
$$

So,

$$
\left(\frac{\partial E}{\partial V}\right)_{T}-T\left(\frac{\partial p}{\partial T}\right)_{V}=-p
$$

Problem 1-41

Show that $\overline{(x-\bar{x})^{2}}=\overline{x^{2}}-\bar{x}^{2}$

$$
\overline{(x-\bar{x})^{2}}=\overline{x^{2}-2 x \bar{x}+\bar{x}^{2}}=\overline{x^{2}}-\overline{2 x \bar{x}}+\bar{x}^{2}=\overline{x^{2}}-2 \bar{x}(\bar{x})+\bar{x}^{2}=\bar{x}^{2}-\bar{x}^{2}
$$

Problem 1-43

Here we have to plot the Gaussian $\left[p(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\bar{x})^{2}}{2 \sigma^{2}}\right)\right]$ for several values of σ to see what happens as $\sigma \rightarrow 0$

As $\sigma \rightarrow 0$, the function becomes sharper and sharper (remember the area under the curve is contrained to be 1, as we will see in problem 1-44a). Thus, the Gaussian approaches a delta function.

Problem 1-44

Gaussian distribution is

$$
p(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\bar{x})^{2}}{2 \sigma^{2}}\right)
$$

(a) show $\int_{-\infty}^{\infty} p(x) d x=1$

$$
\int_{-\infty}^{\infty} \frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\bar{x})^{2}}{2 \sigma^{2}}\right) d x
$$

Let

$$
u=\frac{x-\bar{x}}{\sqrt{2} \sigma}, \text { then } d u=\frac{d x}{\sqrt{2} \sigma}
$$

So we now have

$$
\int_{-\infty}^{\infty} \frac{1}{\sqrt{\pi}} \exp \left(-u^{2}\right) d u
$$

And using standard integral tables or the math software, it can be show that this integral is equal to 1 .
(b) $n^{\text {th }}$ central moment for $n=0,1,2$, and 3

For $n=0$

$$
\overline{(x-\bar{x})^{0}}=1
$$

For $n=1$

$$
\overline{(x-\bar{x})}=\int_{-\infty}^{\infty}(x-\bar{x}) \cdot p(x) d x=\int_{-\infty}^{\infty} \frac{(x-\bar{x})}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\bar{x})^{2}}{2 \sigma^{2}}\right) d x
$$

Let

$$
u=\frac{x-\bar{x}}{\sqrt{2} \sigma}, \text { then } d u=\frac{d x}{\sqrt{2} \sigma}
$$

Then
$\overline{(x-\bar{x})}=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} u \cdot \exp \left(-u^{2}\right) d u=\underbrace{\frac{1}{\sqrt{\pi}} \int_{-\infty}^{0} u \cdot \exp \left(-u^{2}\right) d u}_{I}+\underbrace{\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} u \cdot \exp \left(-u^{2}\right) d u}_{I I}$

For I let $v=-u$ and $d v=-d u$. Then

$$
I=-\frac{1}{\sqrt{\pi}} \int_{0}^{-\infty} u \cdot \exp \left(-u^{2}\right) d u-\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} v \cdot \exp \left(-v^{2}\right) d v=-I I
$$

Thus,

$$
\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} u \cdot \exp \left(-u^{2}\right) d u=0
$$

For $n=2$

$$
\overline{(x-\bar{x})^{2}}=\int_{-\infty}^{\infty}(x-\bar{x}) \cdot p(x) d x=\int_{-\infty}^{\infty} \frac{(x-\bar{x})^{2}}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\bar{x})^{2}}{2 \sigma^{2}}\right) d x
$$

Let

$$
\begin{gathered}
u=\frac{x-\bar{x}}{\sqrt{2} \sigma} \text {, then } d u=\frac{d x}{\sqrt{2} \sigma} \\
\overline{(x-\bar{x})}^{3}=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} 2 \sigma^{2} u^{2} \exp \left(-u^{2}\right) d u=\frac{2 \sigma^{2}}{\sqrt{\pi}} \int_{-\infty}^{\infty} u^{2} \exp \left(-u^{2}\right) d u
\end{gathered}
$$

Now lets take a crack at this integral....

$$
\int_{-\infty}^{\infty} u^{2} \exp \left(-u^{2}\right) d u
$$

We have to do this by parts. Remembering how to do that....

$$
\begin{gathered}
(y x)^{\prime}=y^{\prime} x+y x^{\prime} \\
\int_{-\infty}^{\infty} y^{\prime} x=[y x]_{-\infty}^{\infty}-\int_{-\infty}^{\infty} y x^{\prime}
\end{gathered}
$$

For our case, let

$$
\begin{gathered}
y^{\prime}=-2 u \exp \left(-u^{2}\right) d u \text { and } x=\frac{-u}{2} \\
y=\exp \left(-u^{2}\right) \text { and } x^{\prime}=-\frac{1}{2}
\end{gathered}
$$

So,

$$
\int_{-\infty}^{\infty} u^{2} \exp \left(-u^{2}\right) d u=\underbrace{\left[\frac{-u}{2} \exp \left(-u^{2}\right)\right]_{-\infty}^{\infty}}_{=0}-\underbrace{\int_{-\infty}^{\infty}\left(-\frac{1}{2}\right) \exp \left(-u^{2}\right)}_{=\frac{\sqrt{\pi}}{2}}
$$

Which leaves us with,

$$
\overline{(x-\bar{x})^{2}}=\sigma^{2}
$$

$\underline{\text { For } n=3}$

As before, let

$$
u=\frac{x-\bar{x}}{\sqrt{2} \sigma}, \text { then } d u=\frac{d x}{\sqrt{2} \sigma}
$$

Then,

$$
\overline{(x-\bar{x})}^{3}=2 \sqrt{\frac{2}{\pi}} \int_{-\infty}^{\infty} u^{3} \exp \left(-u^{2}\right)
$$

Since $e^{-u^{2}}$ is a symmetric function around the origin and u^{3} is an antisymmetric function around the origin, the integral of the product of the two functions is zero.

$$
\overline{(x-\bar{x})}^{3}=0
$$

(c) $\lim _{\sigma \rightarrow 0} p(x)=\lim _{\sigma \rightarrow 0} \frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\bar{x})^{2}}{2 \sigma^{2}}\right)=\delta(x-\bar{x})$, the delta function

The delta function is defined as

$$
\int_{-\infty}^{\infty} \delta(x-a) \cdot \phi(x) d x=\phi(a) \text { and } \int_{-\infty}^{\infty} \delta(x) d x=1
$$

So lets see if this works for our case

$$
\lim _{\sigma \rightarrow 0} \int_{-\infty}^{\infty} \frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-a)^{2}}{2 \sigma^{2}}\right) \cdot \phi(x) d x
$$

Let $u=\frac{x-a}{\sigma \sqrt{2}}$ and $d u=\frac{d x}{\sigma \sqrt{2}}$

$$
\lim _{\sigma \rightarrow 0} \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp \left(-u^{2}\right) \cdot \phi(\sigma \sqrt{2}+a)
$$

Since $\sigma \rightarrow 0$

$$
\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp \left(-u^{2}\right) \cdot \phi(a)=\frac{\phi(a)}{\sqrt{\pi}} \underbrace{\int_{-\infty}^{\infty} \exp \left(-u^{2}\right)}_{\sqrt{\pi}}=\phi(a)
$$

Problem 1-49

Maximize

$$
W\left(N_{1}, N_{2}, \ldots . N_{m}\right)=\frac{N!}{\prod_{j=1}^{m} N_{j}!}
$$

under the contraints that $\sum N_{j}=N$ and $\sum E_{j} N_{j}=\varepsilon$.
Since the natural \log is a monotonic function, we can maximize $\ln (W)$.

$$
M=\ln W\left(N_{1}, N_{2}, \ldots N_{m}\right)=\ln \left(\frac{N!}{\prod_{j=1}^{m} N_{j}!}\right)
$$

Using Sterling approximation, this can be written as

$$
N \ln N-N-\sum_{j} N_{j} \ln N_{j}+\sum_{j} N_{j}
$$

But the maximization must be constrained therefore we intoduce Lagrange multipliers

$$
M=N \ln N-N-\sum_{j} N_{j} \ln N_{j}+\underbrace{\sum_{j} N_{j}}_{+N}-\alpha\left(\sum N_{j}-N\right)-\beta\left(\sum E_{j} N_{j}-\varepsilon\right)
$$

Remembering $\sum N_{j}=N$ and taking the derivative of M with respect to N_{j}

$$
\begin{gathered}
\left(\frac{\partial M}{\partial N_{j}}\right)=-\ln N_{j}-1-\alpha-\beta E_{j}=0 \\
\quad-\ln N_{j}=1+\alpha+\beta E_{j} \\
\ln N_{j}=-\alpha^{\prime}-\beta E_{j}, \text { with } \alpha^{\prime}=1+\alpha \\
N_{j}=\exp \left(-\alpha^{\prime}\right) \exp \left(-\beta E_{j}\right)
\end{gathered}
$$

Problem 1-50

We want to show that the maximum of

$$
W\left(N_{1}, N_{2}, \ldots N_{m}\right)=\frac{N!}{\prod_{j=1}^{m} N_{j}!}
$$

occurs for $N_{1}=N_{2}=N_{s} \cdots=\frac{N}{s}$
\rightarrow Maximize

$$
M=\ln W=N \ln N-N-\sum N_{j} \ln N_{j}+\sum N_{j}
$$

subject to the constraint $\sum N_{j}=N$. So we must use Lagrange multipliers:

$$
\widehat{M}=N \ln N-N-\sum N_{j} \ln N_{j}+\sum N_{j}-\alpha\left(\sum N_{j}-N\right)
$$

$$
\begin{gathered}
\frac{\partial \widehat{M}}{\partial N_{j}}=-\ln N_{j}-1-\alpha=0 \\
\ln N_{j}=-(1+\alpha) \Rightarrow N_{j}=\exp [-(1+\alpha)]
\end{gathered}
$$

But now we must determine α

$$
\sum_{j=1}^{s} N_{j}=\sum_{j=1}^{s} \exp [-(1+\alpha)]=S \exp [-(1+\alpha)]=N \Rightarrow \exp [-(1+\alpha)]=\frac{N}{s}
$$

So

$$
N_{j}=\frac{N}{s}
$$

Problem 1-51

Here we use Lagrange multipliers again with the constraint $\sum_{j} P_{j}=1$.

$$
M=-\sum_{j=1}^{N} P_{j} \ln P_{j}-\alpha\left(\sum_{j=1}^{N} P_{j}-1\right)
$$

Maximize

$$
\begin{gathered}
\left(\frac{\partial M}{\partial P_{j}}\right)=-\ln P_{j}-1-\alpha=0 \\
P_{j}=\exp [-(1+\alpha)]
\end{gathered}
$$

Determine α

$$
\begin{gathered}
\sum_{j=1}^{N} P_{j}=N \exp [-(1+\alpha)]=1 \\
\exp [-(1+\alpha)]=\frac{1}{N}
\end{gathered}
$$

Thus

$$
P_{j}=\frac{1}{N}
$$

Problem 2-1

From stat mech we get

$$
\left(\frac{\partial \bar{E}}{\partial V}\right)_{N, \beta}+\beta\left(\frac{\partial \bar{p}}{\partial \beta}\right)_{N, V}=-\bar{p}
$$

And from thermo we have

$$
\left(\frac{\partial E}{\partial V}\right)_{N, T}-T\left(\frac{\partial p}{\partial T}\right)_{N, V}=-p
$$

To show why $\beta \neq($ cont $) * T$ lets see what happens if we let $\beta=\alpha T$ where α is a constant

$$
\left(\frac{\partial \bar{E}}{\partial V}\right)_{N, \beta}+\alpha T\left(\frac{\partial \bar{p}}{\partial(\alpha T)}\right)_{N, V}=-\bar{p}
$$

or

$$
\left(\frac{\partial \bar{E}}{\partial V}\right)_{N, T}+T\left(\frac{\partial \bar{p}}{\partial T}\right)_{N, V}=-\bar{p}
$$

but from a Maxwell relation we know $\left(\frac{\partial \bar{p}}{\partial T}\right)_{N, V}=\left(\frac{\partial S}{\partial V}\right)_{N, T}$ and we can write

$$
\begin{gathered}
\left(\frac{\partial E}{\partial V}\right)_{N, T}+T\left(\frac{\partial S}{\partial V}\right)_{N, T}=-p \\
\underbrace{d E=-T d S-P d V}
\end{gathered}
$$

This statement violates the second law of thermodynamics because it implies that $\delta Q \leqq-T d S \rightarrow \frac{-\delta Q}{T} \geqq d S$

Problem 2-2

Given

$$
\Omega(n)=\frac{n!}{n!\left(n-n_{1}\right)!}
$$

$$
\text { is } n_{1}^{*} \approx \bar{n}_{1} \text { ? }
$$

- n_{1}^{*} is the value of n_{1} that maximizes $\Omega(n)$. From problem 1-50, we know that $n_{1}^{*}=\frac{n}{2}$.
- \bar{n}_{1} is given by

$$
\bar{n}_{1}=\frac{\sum_{n_{1}=0}^{n} n_{1}\left(\frac{n!}{n_{1}!\left(n-n_{1}\right)!}\right)}{\sum_{n_{1}=0}^{n}\left(\frac{n!}{n_{1}!\left(n-n_{1}\right)!}\right)}
$$

We also know that (given in the problem):

$$
y=(1+x)^{n}=\sum_{n_{1}=0}^{n} x^{n_{1}}\left(\frac{n!}{n_{1}!\left(n-n_{1}\right)!}\right)
$$

If we take the derivative of y with respect to x we get

$$
y^{\prime}=n(1+x)^{n-1}=\sum_{n_{1}=0}^{n} n_{1} x^{n_{1-1}}\left(\frac{n!}{n_{1}!\left(n-n_{1}\right)!}\right)
$$

If we let $x=1$:

$$
n 2^{n-1}=\sum_{n_{1}=0}^{n} n_{1}\left(\frac{n!}{n_{1}!\left(n-n_{1}\right)!}\right)
$$

Furthermore,

$$
2^{n}=\sum_{n_{1}=0}^{n}\left(\frac{n!}{n_{1}!\left(n-n_{1}\right)!}\right)
$$

So if we put this all together back in (2-2-1) we get

$$
\begin{gathered}
\bar{n}_{1}=\frac{\sum_{n_{1}=0}^{n} n_{1}\left(\frac{n!}{n_{1}!\left(n-n_{1}\right)!}\right)}{\sum_{n_{1}=0}^{n}\left(\frac{n!}{n_{1}!\left(n-n_{1}\right)!}\right)}=\frac{n 2^{n-1}}{2^{n}}=\frac{n}{2}=n_{1}^{*} \\
\bar{n}_{1}=n_{1}^{*}
\end{gathered}
$$

Problem 2-5

Show that $S=-k \sum P_{j} \ln P_{j}$
We have the following three relations already

$$
\begin{gathered}
S=k T\left(\frac{\partial \ln Q}{\partial T}\right)_{N, V}+k \ln Q \\
P_{j}=\frac{\exp \left(\frac{-E_{j}}{k T}\right)}{Q}
\end{gathered}
$$

and

$$
Q=\sum_{j} \exp \left(\frac{-E_{j}}{k T}\right)
$$

Starting with S we can write

$$
\begin{gathered}
S=\frac{k T}{Q} \frac{\partial Q}{\partial T}+k \ln Q=\frac{k T}{Q} \sum_{j}\left(\frac{E_{j}}{k T^{2}}\right) \exp \left(\frac{-E_{j}}{k T}\right)+k \ln Q \\
S=\frac{k}{Q} \sum_{j}\left(\frac{E_{j}}{k T}\right) \exp \left(\frac{-E_{j}}{k T}\right)+k \ln Q \\
S=-\frac{k}{Q} \sum_{j} \ln \left[\exp \left(\frac{-E_{j}}{k T}\right)\right] \exp \left(\frac{-E_{j}}{k T}\right)+k \ln Q
\end{gathered}
$$

$$
S=-k \sum_{j} \ln \left[\exp \left(\frac{-E_{j}}{k T}\right)\right] \underbrace{\frac{\exp \left(\frac{-E_{j}}{k T}\right)}{Q}}_{=P_{j}}+k \ln Q
$$

Since $\sum P_{j}=1$

$$
\begin{gathered}
S=-k \sum_{j} P_{j} \cdot \ln \left[\exp \left(\frac{-E_{j}}{k T}\right)\right]+k \ln Q\left(\sum_{j} P_{j}\right) \\
S=-k \sum_{j} P_{j} \cdot \ln \left[\exp \left(\frac{-E_{j}}{k T}\right)\right]-k \sum_{j} P_{j} \cdot \ln \left(\frac{1}{Q}\right) \\
S=-k \sum_{j} P_{j} \ln \left[\frac{\exp \left(\frac{-E_{j}}{k T}\right)}{Q}\right] \\
S=-k \sum_{j} P_{j} \ln P_{j}
\end{gathered}
$$

Problem 2-8

$$
\begin{gathered}
\frac{\partial Q}{\partial \beta}=\sum_{j}-E_{j} \exp \left(-\beta E_{j}\right) \\
\bar{E}=\frac{\sum_{j} E_{j} \exp \left(-\beta E_{j}\right)}{Q}=\frac{-\frac{\partial Q}{\partial \beta}}{Q}=-\frac{\partial \ln Q}{\partial \beta} \\
\bar{E}=-\frac{\partial \ln Q}{\partial \beta}
\end{gathered}
$$

Problem 2-10
-First derive $\bar{E}=k T^{2}\left(\frac{\partial \ln Q}{\partial T}\right)_{N, V}$ starting from the result of problem 2-8, namely

$$
\bar{E}=-\frac{\partial \ln Q}{\partial \beta}
$$

From the chain rule

$$
\bar{E}=-\left(\frac{\partial \ln Q}{\partial T}\right)_{N, V} \frac{\partial T}{\partial \beta}
$$

We know $\beta=\frac{1}{k T}$ so $\frac{\partial T}{\partial \beta}=-k T^{2}$, thus

$$
\bar{E}=k T^{2}\left(\frac{\partial \ln Q}{\partial T}\right)_{N, V}
$$

We can check this by taking $k T^{2}\left(\frac{\partial \ln Q}{\partial T}\right)_{N, V}$.

$$
\begin{aligned}
& k T^{2}\left(\frac{\partial \ln Q}{\partial T}\right)_{N, V}=k T^{2} \frac{\left(\frac{\partial Q}{\partial T}\right)_{N, V}}{Q}=k T^{2} \frac{\frac{\partial}{\partial T}\left[\sum \exp \left(-\frac{E_{j}}{k T}\right)\right]_{N, V}}{Q} \\
& k T^{2} \frac{\frac{\partial}{\partial T}\left[\sum \exp \left(-\frac{E_{j}}{k T}\right)\right]}{Q}=\frac{\sum \exp \left(-\frac{E_{j}}{k T}\right) \cdot \frac{E_{j}}{k T^{2}}}{Q}
\end{aligned}
$$

The $k T^{2}$ cancels and we are left with

$$
k T^{2}\left(\frac{\partial \ln Q}{\partial T}\right)_{N, V}=\underbrace{\frac{\sum E_{j} \exp \left(-\frac{E_{j}}{k T}\right)}{Q}}_{\text {definition of } \bar{E}}
$$

So we have shown again that indeed $\bar{E}=k T^{2} \frac{\partial \ln Q}{\partial T}$.

- Now for the relation involving \bar{p}

$$
\begin{aligned}
\bar{p}=\frac{\sum p_{j} \exp \left(-\frac{E_{j}}{k T}\right)}{Q}=\frac{\sum\left(-\frac{\partial E_{j}}{\partial V}\right) \exp \left(-\frac{E_{j}}{k T}\right)}{Q}=\frac{k T \frac{\partial}{\partial V}\left(\sum_{j} \exp \left(-\frac{E_{j}}{k T}\right)\right)_{N, T}}{Q} \\
\bar{p}=\frac{k T\left(\frac{\partial \partial}{\partial V}\right)}{Q}=k T\left(\frac{\partial \ln Q}{\partial V}\right)_{N, T}
\end{aligned}
$$

Problem 2-11

Starting with $F=-k T \ln Q($ Remember $F=A)$

$$
\begin{gather*}
S=-\left(\frac{\partial F}{\partial T}\right)_{V, N} \\
S=k T\left(\frac{\partial \ln Q}{\partial T}\right)_{V, N}+k \ln Q \\
p=-\left(\frac{\partial F}{\partial V}\right)_{T, N} \\
\bar{p}=k T\left(\frac{\partial \ln Q}{\partial V}\right)_{T, N} \\
E=E-T S \rightarrow E=F+T S \\
E=-k T \ln Q+T \cdot\left[k T\left(\frac{\partial \ln Q}{\partial T}\right)_{V, N}+k \ln Q\right] \\
\bar{E}=k T^{2}\left(\frac{\partial \ln Q}{\partial T}\right)_{V, N}
\end{gather*}
$$

Eqn. 2-31

Problem 2-13

For a particle confined to a cube of length a we are asked to show $p_{j}=\frac{2}{3} \frac{E_{j}}{V}$. We can start with the equation for the energy states of a particle in an three-dimensional infinite well, namely

$$
E_{j}=\frac{h^{2}}{8 m a^{2}}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right), n_{x}, n_{y}, n_{z}=1,2 \ldots
$$

Remembering that $a^{3}=V$ or $a=V^{\frac{1}{3}}$ we can write E_{j} in terms of V

$$
\begin{gathered}
E_{j}=\frac{h^{2} V^{-\frac{2}{3}}}{8 m}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right) \\
p_{j}=-\left(\frac{\partial E_{j}}{\partial V}\right)=\frac{2}{3} \frac{h^{2} V^{-\frac{5}{3}}}{8 m}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right)=\frac{2}{3} \cdot \frac{1}{V} \cdot \underbrace{\frac{h^{2} V^{-\frac{2}{3}}}{8 m}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right)}_{E_{j}}
\end{gathered}
$$

So we have

$$
p_{j}=\frac{2}{3} \frac{E_{j}}{V}
$$

and taking the ensemble average gives us

$$
\bar{p}=\frac{2}{3} \frac{\bar{E}}{V}
$$

Problem 2-14

$$
Q(N, V, T)=\frac{1}{N!}\left(\frac{2 \pi m k T}{h^{2}}\right)^{\frac{3 N}{2}} V^{N}
$$

For \bar{p},

$$
\begin{gathered}
\bar{p}=k T\left(\frac{\partial \ln Q}{\partial V}\right)_{T . N} \\
\ln Q=\ln \left(\frac{1}{N!}\right)+\frac{3 N}{2} \ln \left(\frac{2 \pi m k T}{h^{2}}\right)+N \ln V \\
\bar{p}=\frac{k T N}{V}
\end{gathered}
$$

Now for \bar{E}

$$
\begin{gathered}
\bar{E}=k T^{2}\left(\frac{\partial \ln Q}{\partial T}\right)_{N, V}=k T^{2}\left(\frac{3 N}{2} \frac{\frac{2 \pi m k}{h^{2}}}{\frac{2 \pi m T}{h^{2}}}\right) \\
\bar{E}=\frac{3 N}{2} k T
\end{gathered}
$$

Ideal gas equation of state is obtained when $Q=f(T) V^{N} \rightarrow \ln Q=\ln f(T)+N \ln V$

$$
\begin{aligned}
& \bar{p}=k T\left(\frac{\partial \ln Q}{\partial V}\right)_{T . N}= k T\left(\frac{\partial(\ln f(T))}{\partial V}\right)_{T, N}+k T \frac{\partial(N \ln V)}{\partial V} \\
& \bar{p}=\frac{N k T}{V}
\end{aligned}
$$

Problem 2-15

We are given Q as

$$
Q=\left(\frac{\exp \left(\frac{-h v}{2 k T}\right)}{1-\exp \left(\frac{-h v}{k T}\right)}\right)^{3 N} \exp \frac{U_{o}}{k T}
$$

substituting in $\Theta=\frac{h v}{k}$

$$
Q=\left(\frac{\exp \left(\frac{-\Theta}{2 T}\right)}{1-\exp \left(\frac{-\Theta}{T}\right)}\right)^{3 N} \exp \frac{U_{o}}{k T}
$$

To find c_{v} we need to use the following two relations

$$
\begin{gathered}
E=k T^{2}\left(\frac{\partial \ln Q}{\partial T}\right)_{N, V} \\
c_{v}=\left(\frac{\partial E}{\partial T}\right)
\end{gathered}
$$

Using your favorite math package (Maple), we can get E as

$$
E=\frac{\frac{1}{2} e^{-\frac{U_{o}}{k T}}\left[3 N k \Theta e^{\frac{U_{o}}{k T}}-12 N k \Theta e^{\frac{U_{o}+\Theta k}{k T}}+9 N k \Theta e^{\frac{2 \Theta k+U_{o}}{k T}}-2 U_{o} e^{\frac{U_{o}}{k T}}+4 U_{o} e^{\frac{U_{o}+\Theta k}{k T}}-2 U_{o} e^{\frac{2 \Theta k+U_{o}}{k T}}\right]}{\left(-1+e^{\frac{\Theta}{T}}\right)^{2}}
$$

and c_{v} as

$$
c_{v}=\left(\frac{\partial E}{\partial T}\right)=3 \frac{k N \Theta^{2} e^{\frac{\Theta}{T}}}{T^{2}\left(-1+e^{\frac{\Theta}{T}}\right)^{2}}
$$

Now we can take the $\lim _{T \rightarrow \infty} c_{v}$ and we find that

$$
\lim _{T \rightarrow \infty} 3 \frac{k \Theta^{2} e^{\frac{\Theta}{T}} N}{T^{2}\left(-1+e^{\frac{\Theta}{T}}\right)^{2}}=3 N k
$$

[^0]: Problem 1-29

