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Problem 1-22

For this problem we need the formula given in class (McQuarie 1-33) for the energy states
of a particle in an three-dimensional infinite well, namely

nxnynz  h2

8ma2 nx
2  ny2  nz2 , nx,ny,nz  1,2. . . .

Now we can make a table

nx ny nz nx2  ny2  nz2 Degeneracy

1 1 1 3 1

1 1 2 6
1 2 1 6 3
2 1 1 6

1 2 2 9
2 1 2 9 3
2 2 1 9

1 1 3 11
1 3 1 11 3
3 1 1 11

Problem 1-29



Start with the differential form for E

dE  TdS  pdV

E
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We can use a Maxwell relation on S
V T

from FT,V

S
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So,
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Problem 1-41

Show that x  x 2  x2  x 2

x  x 2  x2  2x x  x 2  x2  2x x  x 2  x2  2 x  x   x 2  x2  x 2



Problem 1-43

Here we have to plot the Gaussian px  1
 2

exp  x x 2

22 for several values of 
to see what happens as   0

As   0, the function becomes sharper and sharper (remember the area under the curve is
contrained to be 1, as we will see in problem 1-44a). Thus, the Gaussian approaches a delta
function.

Problem 1-44

Gaussian distribution is

px  1
 2

exp  x  x 
2

22

(a) show 
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, then du  dx
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So we now have
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expu2du

And using standard integral tables or the math software, it can be show that this integral is
equal to 1.



(b) nth central moment for n  0,1,2, and 3

For n  0

x  x 0  1     see part a

For n  1

x  x   



x  x   pxdx  



 x  x 
 2

exp  x  x 
2

22 dx

Let
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, then du  dx
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Then
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For I let v  u and dv  du. Then
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Thus,
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 u  expu2du  0

For n  2

x  x 2  
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Let
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u2 expu2du

Now lets take a crack at this integral....





u2 expu2du

We have to do this by parts. Remembering how to do that....

yx   y x  yx 
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For our case, let

y   2uexpu2du and x  u2

y  expu2and x    1
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Which leaves us with,

x  x 2  2

For n  3

x  x 3
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As before, let

u  x  x
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, then du  dx
2 

Then,

x  x 3
 2 2

 

u3 expu2

Since eu2 is a symmetric function around the origin and u3 is an antisymmetric
function around the origin, the integral of the product of the

two functions is zero.

x  x 3
 0

(c) lim
0
px  lim

0
1

 2
exp  x x 2

22  x  x , the delta function

The delta function is defined as







x  a  xdx  a and 




xdx  1

So lets see if this works for our case
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Problem 1-49

Maximize

WN1,N2, . . . .Nm  N!
 j1

m Nj!

under the contraints thatNj  N andEjNj  .

Since the natural log is a monotonic function, we can maximize lnW.

M  lnWN1,N2, . . . .Nm  ln N!
 j1

m Nj!

Using Sterling approximation, this can be written as



N lnN  N 
j

Nj lnNj 
j

Nj

But the maximization must be constrained therefore we intoduce Lagrange multipliers

M  N lnN  N 
j

Nj lnNj 

N


j

Nj  Nj  N    EjNj  

RememberingNj  N and taking the derivative of M with respect to Nj

M
Nj

  lnNj  1    Ej  0

 lnNj  1    Ej

lnNj     Ej , with    1  

Nj  exp expEj

Problem 1-50

We want to show that the maximum of
WN1,N2, . . .Nm  N!


j1

m
Nj!

occurs for N1  N2  Ns     N
s

Maximize

M  lnW  N lnN  N Nj lnNj Nj

subject to the constraintNj  N. So we must use Lagrange multipliers:

M  N lnN  N Nj lnNj Nj   Nj  N



M
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  lnNj  1    0

lnNj  1    Nj  exp1  

But now we must determine 
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s

Nj 
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exp1    Sexp1    N  exp1    N
s

So

Nj  N
s



Problem 1-51

Here we use Lagrange multipliers again with the constraint j Pj  1.

M  
j1

N

Pj lnPj   
j1

N

Pj  1

Maximize

M
Pj

  lnPj  1    0

Pj  exp1  

Determine 
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N
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exp1    1
N

Thus

Pj  1
N

Problem 2-1

From stat mech we get

E
V N,

  p
 N,V

 p

And from thermo we have



E
V N,T

 T p
T N,V

 p

To show why   cont  T lets see what happens if we let   T where  is a constant

E
V N,

 T p
T N,V

 p

or

E
V N,T

 T p
T N,V

 p

but from a Maxwell relation we know p
T N,V

 S
V N,T

and we can write

E
V N,T

 T S
V N,T

 p

dE  TdS  PdV

This statement violates the second law of thermodynamics because it implies that
Q  TdS  Q

T  dS



Problem 2-2

Given

n  n!
n!n  n1!

is n1
  n 1?

 n1
 is the value of n1 that maximizes n. From problem 1-50, we know that

n1
  n

2 .
 n 1 is given by
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n
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n
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    2-2-1

We also know that (given in the problem):
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If we take the derivative of y with respect to x we get
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If we let x  1:
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Furthermore,
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So if we put this all together back in (2-2-1) we get
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Problem 2-5

Show that S  kPj lnPj

We have the following three relations already

S  kT  lnQ
T N,V

 k lnQ
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Q
and
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j
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Starting with S we can write
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Q
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Problem 2-8

Q
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j
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E    lnQ


Problem 2-10

First derive E  kT2  lnQ
T N,V

starting from the result of problem 2-8, namely

E    lnQ




From the chain rule

E    lnQ
T N,V

T


We know   1
kT so T

  kT2, thus

E  kT2  lnQ
T N,V

We can check this by taking kT2  lnQ
T N,V

.
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Q
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T  exp  EjkT N,V

Q
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 exp  EjkT 

Ej
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Q

The kT2 cancels and we are left with

kT2  lnQ
T N,V



definition of E

Ej exp  EjkT
Q

So we have shown again that indeed E  kT2  lnQ
T .

Now for the relation involving p
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Problem 2-11

Starting with F  kT lnQ (Remember F  A

S   F
T V,N

S  kT  lnQ
T V,N

 k lnQ     Eqn. 2-33

p   F
V T,N

p  kT  lnQ
V T,N

    Eqn. 2-32

F  E  TS  E  F  TS

E  kT lnQ  T  kT  lnQ
T V,N

 k lnQ

E  kT2  lnQ
T V,N

    Eqn. 2-31

Problem 2-13

For a particle confined to a cube of length a we are asked to show pj  2
3
Ej
V . We can start

with the equation for the energy states of a particle in an three-dimensional infinite well,
namely

Ej  h2

8ma2 nx
2  ny2  nz2 , nx,ny,nz  1,2. . . .

Remembering that a3  V or a  V 1
3 we can write Ej in terms of V
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So we have
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and taking the ensemble average gives us
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3
E
V

Problem 2-14

QN,V,T  1
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2 VN

For p ,
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Now for E
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Ideal gas equation of state is obtained when Q  fTVN  lnQ  ln fT  N lnV
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Problem 2-15

We are given Q as

Q 
exp h

2kT

1  exp h
kT

3N

exp UokT

substituting in   h
k

Q 
exp 2T 

1  exp T 

3N

exp UokT

To find cv we need to use the following two relations

E  kT2  lnQ
T N,V

cv  E
T

Using your favorite math package (Maple), we can get E as

E 

1
2 e
 UokT 3Nke

Uo
kT  12Nke

Uok
kT  9Nke

2kUo
kT  2Uo e

Uo
kT  4Uoe

Uok
kT  2Uoe

2kUo
kT

1  e

T

2

and cv as
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T  3 kN2e
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Now we can take the lim
T
cv and we find that
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