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Ensembles and Relation to T.D. 
It is possible to expand both sides of the equation 

F = −kT lnQ 

with 

e−βEiQ = 
� 

i 

If we expand both sides of this equation, we apparently obtain: 

F = E − TS = E 

According to the expression above, the TS term has disappeared!! 

To resolve this discrepancy, remember that the summation in Q is over all the microstates 
available to the system and not over the energy levels. Each energy level is highly degenerate, 
and Q can be expressed as: 

� 
Ω (N, V, E) e−βEE levels Q = 

E levels 

Now, we can perform the expansion: 

F = E − TS = E − kT ln 
� 

Ω (N, V, E) 
E levels 

By inspection, it can be seen that 

S = k 
� 

lnΩ (N, V, E) 
E levels 

This expression is the classical expression for the entropy of an isolated system (microcanoni
cal ensemble). 

Note that the Canonical ensemble is basically a collection of microcanonical ensembles. 

In general, we can write down the partition function for any ensemble as: 

e−βX2Z = 
� 

Ω (N, V, E) e−βX1

X1,X2... 

In this general expression, the degeneracy of each energy level has been taken into account by 
Ω (N, V, E). The sum in this case is not over all the microstates but over the different values that 
the extensive properties (such as energy, volume, N, magnetization, etc. can take). 



For more details, see Hill, p. 30 

Fluctuations 
In Statistical Mechanics, the mechanical variables (those variables that can be explicitly de

fined for each of the microstates accessible to the system) fluctuate around their average (or most 
probable) value with a characteristic spread, which is a function of the actual boundary conditions 
of the system under study. 

Depending on the boundary conditions (i.e. ensemble) used, different mechanical properties 
fluctuate. 

It is important to answer to these two questions: 

How big are fluctuations of mechanical properties? • 

Does the relative size of the fluctuations offer new information? • 

In general, the spread of the distribution for the values of the instantaneous mechanical prop
erties around their average values is given by: 

2 
σ2 = 

�
M − M

�2 
= M2 − MM 

In class, we saw a threestep procedure to obtain the fluctuation of a mechanical variable: 

Given the explicit equation for the average value for a mechanical property M : 

M = 
� 

Mν Pν 

ν 

1) Multiply both sides by the partition function of the ensemble: 

MZ = 
� 

Mν Pν Z 
ν 

2) Take the derivative of the equality with respect to the conjugate variable of the fluctuating 
mechanical variable. 

3) Divide both sides by the partition function and rearrange. 

In general, the spread for extensive mechanical variables is very small for large systems (N ∼
1023): 

σM 1 

M 
∼ √

N 

There are some cases, however, when fluctuations are not negligible: 

Small Systems • 



�� 
� �� 

� �� 
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Critical Points • 

Applications of Statistical Mechanics to Specific Systems 
In general, the partition function for a statistical mechanical ensemble (in this case the Canon

ical Ensemble) is given by: 
e−βEνQ = 

� 

ν 

For systems of noninteracting particles, it is possible to write their partition function in an 
explicit manner. 

Examples of these systems: 

Ideal Gas • 

Electrons in a periodic crystal • 

Photon Gas • 

Lattice Vibrations • 

Distinguishable Particles 
For non interacting particles, we saw in class that the total energy of the system can be ex

pressed as: 

ET = εa + εb + εc +l m n · · · 
where εa is the energy of particle a in microstate l.l 

If the particles are nondistinguishable, the partition function is very easy to evaluate: 

� 
e−βEν = 

� � � 
e−β(ε b

m+ε +···)a
l +ε c

nQ = · · · 
ν l m n 

e−βε b
m 

a
l 

c
ne−βε e−βεQ = · · · · · 

l m n 

Q =
qa · qb · qc · · ·

If all the particles are identical, qa = qb =
qc · · · :


Q = q N 

where 

e−β�lq = 
� 

l 

where l is the subindex corresponding to each of the microstates accessible to each of the particles 
comprising the system. 



Nondistinguishable Particles 
When the system is composed of noninteracting, nondistinguishable particles, the unrestricted 

sum: 

+εb +εc +Q = 
� 

e−βEν = 
� � � 

e−β(εl
a 

m n ···) · · · 
ν l m n 

has to be corrected. 

For fermions, there cannot be two particles in the same microstate: 

εa + εl
b + εc + violates Pauli l n · · · → 

For bosons: 

εa + εb + εc + εd εa + εb
l + εc + εd Over counting N timesl m m m m m m↔ 

εa + εl
b + εc + εd εa + εb + εl

c + εd Over counting 
N (N − 1)

timesl m m m m l↔ 
2 

εa + εb + εc + εd εa + εb
l + εc + εd Over counting N !timesl m n o o m n↔ 

When the number of states available is much greater than the number of particles in the system 
Φ (E) >> N , the last term dominates the sum, and the partition function can be approximated 
as: 

Nq
Q = 

N ! 
This is usually the case for: 

High Temperatures • 

Low Density • 

Large Mass • 

Problem 1 
Consider the isothermalisobaric ensemble, for which the partition function is 

e−βEi −βpVjΔ = 
� 

i,j 

For this ensemble, calculate the standard deviation σV of the volume, as a fraction of the total 
volume of the system. 

Solution 1 
We know that 

σ2 2 
= V 2 

V − V 

In order to calculate the fluctuation for the volume in this ensemble, we follow the procedure 
seen in class: 



� 

� � 

� � 

First, we write the explicit equation for the average volume in this ensemble: 

Vj e
−βEi−βpVj 

¯ i,j
V = 

Δ 

1) Multiply both sides of the equality by the partition function Δ: 

¯ Vj e
−βEi−βpVjV Δ = 

� 
· 

i,j 

2) Take the derivative of both sides with respect to the conjugate variable for V , in this case, we 
define the conjugate variable as γ = βp: 

∂ 
� 

∂ 
�
V̄ Δ

� 
i,j 

Vj e
−βEi −γVj 

· 
= 

∂γ ∂γ 
¯∂V ¯ ∂Δ − 

� 
Vj 

2 e−βEi−γVjΔ + V = 
∂γ ∂γ 

i,j 

e−βEi−γVj∂ 
� 

¯∂V ¯
i,j − 

� 
Vj 

2 e−βEi−γVjΔ + V = 
∂γ ∂γ 

i,j 

¯∂V 
∂γ 

Δ− V̄
� 

Vj e
−βEi−γVj − 

� 
Vj 

2 e−βEi−γVj= · 
i,j i,j 

3) Divide both sides by the partition function: 

¯∂V 2 
= −V 2 

∂γ 
− V 

pFrom this we finally obtain (here we have expanded γ = 
kT ): 

σ2 = V 2 − V 
2 

= −kT 

� 
∂V 

� 

V ∂p T ,N 

Using the definition for the isothermal compressibility, we have: 

σ2 = kTV κTV 

The normalized standard deviation of the volume is given by: 

σV (kT V κT )
1/2 

� 
kTκT 

= = 
V V V 

1For an ideal gas, κT = 
p and we have: 



σV 

� 
kT 

� 
kT 1 

= = = 
V PV NkT 

√
N 

Problem 2 
Consider a system of N distinguishable noninteracting spins in a magnetic field H. Each spin 

has a magnetic moment of size µ, and each can point either parallel or antiparallel to the field. 
The magnetic moment is given by niµ where ni = +/ − 1. Note that since the system is made 
of noninteracting particles, the total energy of the system does not depend on the arrangements of 
the spins, i.e. the energy is constant. 

(a) Determine the internal energy of this system as a function of β, H, and N by employing an 
ensemble characterized by these variables. 

(b) Determine the entropy of this system as a function of β, H, and N. 
(c) Determine the behavior of the energy and entropy for this system as T 0. → 

Solution 2 

The magnetization is given as 

N

M = 
� 

niµo 

i=1 

This is basically saying that we have atoms localized in a crystal and the magnetic moment at • 
each site can be either up or down. The problem asks us to determine the thermodynamic properties 
as a function of T, N, H. Let us also assume for simplicity that we can work at constant volume. 
Therefore, our controlling variables are T, N, V, H. 

We need to make the appropriate Legendre transform to the entropy. Remember the entropy • 
can be written starting from E: 

E = TS − pV + HM + µN 

rearranging to get things in terms of S and β we get 

S 
= βE + βpV − βHM − βµN 

k 

Legendre transform such that our controlling variables are V, N, T, H 

S 
k 
− βE + βHM = β(TS − E + HM) = −βψ = ln Γ 

where ψ is the characteristic potential for this ensemble with V, N, T, H constant and Γ is 
the partition function. Γ can be written as 

Γ =	
� 

exp [−β (Estate − MstateH)] 
states 



where we sum over all possible energy states and magnetizations Mstate. 

Since the particles are noninteracting, the energy at N, β = constant and H = 0 is constant. • 
E is independent of the number or arrangement of up versus down spins. Since the absolute scale 
of energy is not important for thermodynamics, we can arbitrarily set the constant energy equal to 
zero giving us 

NN
� 

Γ = 
� 

exp [βMstateH] = 
� 

exp 

� 

β 
� 

niµoH = 
� � 

exp [βniµoH] 
states n1,n2,...nN i=1 n1,n2,...nN i=1 

N N +1

Γ = 
� � 

exp [βniµoH] = 
� � 

exp [βniµoH] 
n1,n2,...nN i=1 i=1 ni=−1 

We can evaluate the sum since ni = ±1 so, 

Γ = (exp [βµoH] + exp [−βµoH])N 

We know the characteristic potential of an ensemble is related to the partition function for that 
ensemble according to 

−βψ = ln Γ → ψ = −kT ln Γ 

Furthermore, we know from thermo that 

dψ = −SdT − pdV + µdN − MdH 

which gives us the following relationships for the properties of the system: 

� 
∂ψ 

�
S = − 

∂T V,N,H � 
∂ψ 

�
M = − 

∂H V,N,T � 
∂ψ 

� 

µ = 
∂N V,T,H � 

∂ψ 
� 

p = − 
∂V T ,N,H 

and from stat mech we have from above 

ψ = −kT N ln [exp [βµoH] + exp [−βµoH]] 

Lets get the entropy, S • 



� 
∂ψ 

�
S = − 

∂T	 V,N,H 

�− µoH � 
(exp [βµoH]− exp [−βµoH])

S = kN ln (exp [βµoH] + exp [−βµoH]) + kTN kT 2 

exp [βµoH] + exp [−βµoH] 

S = kN {ln (exp [βµoH] + exp [−βµoH]) − βµo tanh (βµoH)} 

Now for the magnetization • 

� 
∂ψ 

�	 � 
exp [βµoH]− exp [−βµoH]

�
M = = kTNβµo	 = Nµo tanh (βµoH)− 

∂H	 V,N,T exp [βµoH] + exp [−βµoH] 

M = Nµo tanh (βµoH) 

The energy E •


ψ = E − TS − HM


E = ψ + TS + HM = 0 

However if you define a quantity called the internal magnetic energy (which is a quantity • 
analogous to the enthalpy in the T, p, N ensemble) 

EH = E − HM 

you can get 

EH = −NµoH tanh (βµoH) 

The last part of this problem asks you to determine the behavior of the energy and entropy as • 
T 0. →


EH (T → 0) = −NµoH


lim S =	 lim kN {ln (exp [βµoH] + exp [−βµoH]) − βµo tanh (βµoH)} = 0 
β→∞	 β→∞ 

S(T → 0) = 0 is in accordance with the third law of thermodynamics. 


