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Configurational D.O.F 
In class we saw how to treat systems of identical, distinguishable, noninteracting adatoms 

were the only degrees of freedom were configurational. In this case, we consider M total positions 
for N identical particles. For such systems, assuming (N, V, T ) boundary conditions, the partition 
function obtained was: 

Q = 
� 

Ω (E) e−βE 

E 

Since the energy of this ensemble was independent of the actual configuration of the system, 
there is effectively one energy level and we just have: 

Q = Ω (E) e−βE 

The degeneracy Ω (E) of this energy level can be calculated as the total number of ways in 
which we can arrange N particles in M sites: 

M ! 
e−βNε Q = 

N ! (M − N)! 

Using the known formalism for this ensemble, 

F = −kT ln Q· 
S = k ln Ω · 

Note that the entropy of this system corresponds to the entropy of the microcanonical ensem
ble. This is due to the fact that the total energy of each subsystem (particle) is the same ε. 

Equivalence between Ensembles 
In class we also saw that the behavior of the system is independent of the ensemble that we use 

to describe it. In the previous example, we considered two possibilities: 

The adatoms were subjected to boundary conditions consistent with fixed N , V and T . This • 
corresponds to the canonical ensemble. 

•	 The adatoms were set in equilibrium with a vapor, so the B.C. were µ, V and T . This is the 
grand canonical ensemble. 

In the case of the Canonical ensemble, we found an expression for the chemical potential as a 
function of x where x is the occupation fraction, N :

M 

� 
x 

� 

µ = ε + kT ln (1)· 
1− x 

Using the Grand Canonical ensemble, we found an expression for x as a function of the chem
ical potential: 



e−β(ε−µ) 

x = − 
1 + e−β(ε−µ) 

(2) 

If we solve for µ in the expression above, we obtain the same expression as Eq. 1. Therefore, 
the calculated thermodynamic properties of the system are independent of the ensemble chosen to 
describe it. 

Vibrational Degrees of Freedom 
In class, we consider a collection of N independent and distinguishable 3 − D harmonic os

cillators. For this system, considering the Canonical ensemble, the partition function obtained 
was: 

θ 3N⎛ 
/2T 

⎞ 
e 

Q = ⎝ 
θ

⎠
/Te − 1 

hωwhere θ = ¯ and ω = 
� 

f . Note that f and m are materialdependent properties. This simple 
k m 

approximation is called the Einstein’s model for a vibrating crystal. 

Using the already well known expressions for the thermodynamic properties of the Canonical 
ensemble, we obtained: 

E = 
3Nh̄ω 

2 
+ 3NkT 

CV = 3Nk 

� 
θ 
T 

�2 

� 

· 
� 

θ/T 

e 
θ/T − 1 

� 

e 
θ/T 

θ
�2 

/T − 1e 

The following limits were obtained: 

hωET →0 = 3N 
2
¯ ET →high = 3NkT 

CV,T 0 = 0 CV,T →high = 3Nk →

The universal function for the CV as a function of T has the following shape: 
θ 

CVObserve how fast the solid reaches the DulongPetite limit of 
N k ∼ 3. For the majority of 

solids, θE ∼ 1000 K. 

The entropy of an Einstein Solid can be calculated from 
� 

∂ ln Q
�

S = k ln Q + kT 

� 
θ/TS = 3Nk 

∂T 

�
θ/T 

�� 

− ln 1− e−
θ/Te − 1
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Note that, as T 0, S 0. This means that, as T 

θ
T 

0, the system sinks to its lowest energy →
state. Each atom is in its vibrational ground state (does not vibrate). 

→
 → 

Problem 1 

A system consists of N noninteracting atoms. Each atom may be in two states, a low energy 
state with energy, E = 0 and an ‘excited’ state, with energy E. 

a) How many atoms are in the excited state? 

b) What is the total energy U of this system as a function of N , E, k (the Boltzmann constant) 
and T? 

Solution 1 
(a) A system of N noninteracting particles with two possible states either 0 or ε. A good rule 

is too assume ”particles” (e.g. atoms, electrons, etc) are indistinguishable unless they are localized 
in a crystal or on a surface. The number of atoms in the excited state can be determined using 
Boltzmann statistics under the assumption that we are working at high temperature and/or low 
density. 

Consider a system on noninteracting indistinguishable particles, for which 

Nq
Q(N, V, T ) = 

N ! 



with 
εj 
kT q(V, T ) = 

� 
e 

j 

Remember that this holds when Φ (ε) >> N . 

For this system, the total energy is given by: 

E = N · ε̄ = kT 2 

� 
∂ ln Q 
∂T 

� 

N,V 

= N 
� 

j 

εj 
e
−εj/kT 

q 

Note that, according to the expression above, 

ε̄ = 
� 

εj 
e
−εj/kT 

q
j 

The probability that a molecule is in the jth state is 

e
−εj/kT e

−εj/kT 
πj = = 

q � 
e
−εj/kT 

j 

In this problem, the two available states are 0 and ε, and the total number of particles in the ε 
state are 

Nε = Nπε 

where πε is the probability an atom will be in state ε This probability is determined using the single 
particle partition function and can be written as 

exp 
� −ε 

� 

πε = kT (3)� 
exp 

� −ε;
�

kT 
i 

But our system can be in only two states, so the sum in the denominator can be found 
explicitly: 

exp 
� −ε 

� 

πε = kT 

exp [0] + exp 
� −ε 

�
kT 

So Nε can be written as 

exp 
� −ε 

� 
N 

Nε = Nπε = N kT = 
1 + exp 

� −ε 
� 

1 + exp 
� 

ε 
�

kT kT 

Nε = N 
1+exp[ ε 

kT ] 



(b) The total energy is simply U = Nε = N 
� 

πiεi (McQuarrie 412 and 413) 
i 

U = N 
� 

πiεi = N (π1ε1 + π2ε2) = N [(1 − π2) 0 + π2 · ε]· 
i � 

exp 
� −ε 

� � 

U = N (π2ε) = N kT ε 
1 + exp 

� −ε 
�

kT 

U = Nε 
ε1+exp[ kT ] 

Note: Since many particles will occupy the same state (either 0 or ε) these particles must be 
Bosons. At lower temperatures we would have to use BoseEinstein statistics (McQuarrie 426) 
which would lead to a much more complicated problem since we would have to determine the 
chemical potential µ. 


