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GibbsDuhem Equation 
From fist law: 

dU = T dS − P dV + µdN 

From Euler Relation: 

dU = T dS + SdT − P dV − V dP + µdN + N dµ 

Since dU = dU 
SdT − V dP + N dµ = 0 

Intensive Variables are Not Independent!!! 
Gibbs Free Energy: 
At constant pressure and temperature, the condition for equilibrium in a system is obtained by 

minimizing the Gibbs free energy. 
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At constant pressure and temperature: 
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ClausiusClapeyron Equation 
If two phases are at equilibrium, 

Gα = Gβ 

At the coexistence line, any change in the Gibbs energy of α must be matched by a corresponding 
change in the Gibbs energy of β: 

dGα = dGβ 

Therefore, 

−SαdT + V αdP = −SβdT + V βdP 

Consequently, 

βdT ΔV α→
= 

βdP ΔSα→

Gibbs Phase Rule 



Let ϑ be the number of degrees of freedom that exist in a system with ϕ phases and m compo
nents. The phases are considered to be at equilibrium. 

Let us calculate the number of variables that can be controlled in each phase. For each phase, 
there are P, T, m − 1 variables. The total number of variables for a system of ϕ is given by: 

# var = ϕ (m + 1) 

If we use the equilibrium conditions, we also have the following equations: 

T α = T β = = TΦ = (ϕ − 1)· · · 
Pα = P β = = PΦ = (ϕ − 1)· · · 

α β Φ µ = µ = = µ = (ϕ − 1) mi i · · · i 

The total number of equations in the system is then 

#equ = (m + 2) (ϕ − 1) 

The number of degrees of freedom of the system is then given by: 

ϑ = # var −#equ = m + 2 − ϕ 

This is the Gibbs Phase Rule 
Open Systems 
Open Systems: Variables: S,V, N: 
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where 
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For the Legendre Transforms, we have: 

H ≡ U + P V dH = TdS + V dP + 
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F ≡ U − TS dF = −SdT − P dV + 
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G ≡ U − T S + PV dG = −sdT + V dP + 
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The chemical potential, µi has different definitions, depending on the potential. However, the def
initions are equivalent, as can be seen in the previous equation. 

Using the Euler Relations: 



� 

i 
µiniU
= 

H = T S +


T S − P V + 

−P V +
� 

i 

� 

i 

� 

i 

µini 

F =


G =


µini 

µini 

Using First Law, and Euler Relation for the Energy, one can get the GibbsDuhem Equation: 

SdT − V dP + 
� 

nidµi = 0 
i 

The GibbsDuhem relation tells you that thermodynamic potentials in a system are not inde
pendent. A change in one of the potentials has to be accompanied by a corresponding change in 
the rest. 

At constant temperature and pressure, the GibbsDuhem relation implies that, by knowing the 
thermodynamic behavior of one of the components, i of the system, it is possible to determine the 
behavior of the rest. To do this we have to do a GibbsDuhem Integration. 

For a composite system, at constant pressure and temperature, (at mechanical and thermal 
equilibrium), the condition of equilibrium is such that the system minimizes its Gibbs free energy 
by changing its composition, ni. For each component for which there is no constraint in its transfer 
across the composite system’s internal boundaries, the equilibrium condition implies that: 

α β φ µ = µ = · · · = µi i i 
α β φ = µj = · · · = µjµj 
. . . . . . . . . 
α β φ µk = µ = = µk k 

For all φ phases and k components. 

Note that this equilibrium condition is valid, as long as the internal variables that can change 
are not coupled. For example, it is common that solids change their molar volume as their com
position changes, so, in this case, the condition of all the chemical potential of i being equal in all 
phases is not the correct one. 

βWhen µα > µ i , and component i can pass across the α/β boundary, there will be a driving i 
α β αforce for the mass flow of i, �µi = µi −µi until the system reaches an equilibrium state. µ β = µi .i 

So −dnα = dnβ
i . Component i flows from the high chemical potential region to the low chemical i 

potential region. The mass flow of i is parallel to minus the gradient of the chemical potential of 
component i. 

Partial Molar Quantities 
For any extensive quantity, Y , it is possible to define a corresponding partial quantity Yi: 



∂Y 
�
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Partial Pressures 
When a gas is in equilibrium with a condensed phase, the activity of component i in the con

densed phase is such that 

pi 
ai = 

Pi 

where pi is the partial pressure of component i in the gas mixture and Pi is the vapor pressure of i 
when you have a gas of pure component i over a condensed phase composed only of i. 

In general, 

ai = γixi 

where γi is called the activity coefficient of i. 

Solutions 
It is possible to define a change in the chemical potential µi of component i: 

dµi (P, T, xi)P,T = RT d ln (ai) 

Where ai is an arbitrary activity function that just makes life easier when trying to describe the 
thermodynamics of the system. We can integrate the previous equation on both sides, obtaining: 

∗ (P, T )i P,T + RT ln (ai)µi (P, T, xi)P,T = µ

where µ is the reference state at the sameand∗ (T, P ) P T .i 

0The standard state µi (T, P = 1 atm.) is at P = 1 atm.. 

In general, 
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iSince Vi ∼ 0 for condensed matter, µ∗i for moderate pressures. ∼ µ

Problem 1 

The boiling point of Li is 1620 K. 

(a) What is the vapor pressure of liquid Li at 1000 K? 
(b) Estimate the melting point of lithium from the data given. 

Data: 



Enthalpy of evaporation is 156 kJ/mol

Vapor pressure above solid Li is given by:


19, 314 
ln(P ) = 13.049 − 

T 

Solution 1 

(a) Integrate the ClausiusClapeyron Equation 

d ln P ∗ ΔH 
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For this example, P1 = 1 atm (at boiling), T1 = 1620K,and T2 = 1000K 

−156, 000 
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1 1 
�

ln P2 = 
8.314 1000 

− 
1620 

P2 = 7.6 × 10−4 atm 

(b) At the melting point of Li, Psolid = Pliquid 

19, 314 −156, 000 
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1 1 
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13.049 − = 
T	 8.314 T 

− 
1620 

550.5 
1.47 = 

T 

T = 375K 


