We shall prove the relation between the linear thermal expansion and the volumetric thermal expansion (assuming the material is isotropic).
$\alpha_{V}=\frac{1}{V} \cdot \frac{d V}{d T}=\frac{1}{L^{3}} \cdot \frac{(L+d L)^{3}-L^{3}}{d T}=\frac{3}{(L \cdot d T)} \cdot d L+\frac{3}{\left(L^{2} \cdot d T\right)} \cdot \mathrm{dL}^{2}+\frac{1}{\left(L^{3} \cdot d T\right)} \cdot \mathrm{dL}^{3}$

We will now neglect the second and third order differentials.......

$$
\alpha_{V}=\frac{3}{(\mathrm{~L} \cdot \mathrm{dT})} \cdot \mathrm{dL}=3 \cdot \alpha_{\mathrm{L}}
$$

