Massachusetts Institute of Technology

Department of Materials Science and Engineering 77 Massachusetts Avenue, Cambridge MA 02139-4307

3.205 Thermodynamics and Kinetics of Materials—Fall 2006

November 28, 2006

Assignment 10: Due 10 A.M. Thursday, December 7.

Note: Problem #1 is held over from Assignment 9. If you already answered it well you do not have to re-submit. If you wish to submit a revised answer you are welcome to do so.

- 1. In typical solid-state system, $\Delta g_B = -2000 \text{ J/mol}$ and $\gamma = 100 \text{ mJ/m}^2$. Calculate the critical size R_c and free energy barrier $\Delta \mathcal{G}_c$ for homogeneous nucleation under these conditions. Assuming that the material is f.c.c. and has a lattice constant of 0.38 nm, how many atoms are there in the critical nucleus? Compare $\Delta \mathcal{G}_c$ to 76kT, assuming a nucleation temperature of 800 K. Is homogeneous nucleation likely under these conditions?
- 2. Please solve exercise 5.1 on page 379 of Porter and Easterling's *Phase Transformations in Metals and Alloys*.
- 3. Please solve exercise 5.3 on page 380 of Porter and Easterling's *Phase Transformations in Metals and Alloys*.
- 4. Please solve exercise 5.5 on page 380 of Porter and Easterling's *Phase Transformations in Metals and Alloys*.
- 5. Please solve exercise 5.10 on pages 380–381 of Porter and Easterling's *Phase Transformations in Metals and Alloys*.