# Massachusetts Institute of Technology 

Department of Materials Science and Engineering
77 Massachusetts Avenue, Cambridge MA 02139-4307
3.205 Thermodynamics and Kinetics of Materials—Fall 2006

November 2, 2006

Assignment 8: Due Thursday, November 9

1. Figure 1 shows data for the steady-state composition profile of carbon diffusing through a hollow cylinder of iron at $1000^{\circ} \mathrm{C}$.


Figure by MIT OCW.
Figure 1: Data for C diffusion in an iron pipe. Steady-state concentration profile for diffusion at $1000^{\circ} \mathrm{C}$. Units for $r$ are centimeters. Data from R.P. Smith, Acta Met. 1, 578 (1953).
(a) Find an expression for the steady-state composition profile for diffusion through a pipe of inner radius $r_{i}$ and outer radius $r_{o}$ assuming constant diffusivity. The corresponding surface concentrations are maintained at $c_{i}$ and $c_{0}$, respectively.
(b) Estimate the value of the diffusivity of carbon in iron at $1000^{\circ} \mathrm{C}$ using the data in Fig. 1. Do the data support the assumption that the diffusivity is independent of carbon concentration?
2. (Ref: Poirier and Geiger 1994, p. 502.) Silicon is exposed to a gas that establishes a concentration of $10^{18}$ atoms (Al) per $\mathrm{cm}^{3}$ on the surface of the silicon. The process is carried out at 1473 K and the diffusivity of Al in Si is $10^{-15} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ at this temperature.
(a) After 30 min , at what depth below the surface of the Si will the concentration be $10^{16}$ atoms (Al) per $\mathrm{cm}^{3}$ ?
(b) Calculate the total amount of Si (in atoms ( Al ) per $\mathrm{cm}^{2}$ ) that has diffused into the Si after 30 min of treatment at 1473 K . The flux at the surface is given by

$$
\begin{equation*}
J(x=0, t)=\left(c_{s}-c_{0}\right) \sqrt{\frac{D}{\pi t}} \tag{1}
\end{equation*}
$$

3. Please solve Exercise 2.6 on p. 108 of Porter and Easterling's text Phase Transformations in Metals and Alloys.
4. (Ref: Poirier and Geiger 1994, p. 506.) By ion implantation, lithium can be concentrated in a very thin surface layer ( $10^{-6} \mathrm{~cm}$ ) on a nickel substrate. After implanting the surface layer, it has a lithium concentration of $10^{20}$ atoms $\mathrm{cm}^{-3}$. Determine the time at 1000 K for reducing the surface concentration to $10^{19}$ atoms $\mathrm{cm}^{-3}$. At 1000 K , the diffusivity of lithium in nickel is $5 \times 10^{-12} \mathrm{~m}^{2} \mathrm{~s}^{-1}$.
5. (Ref: Poirier and Geiger 1994, p. 507.) In order to make transformer steel with low losses, a lowsilicon iron sheet 2 mm in thickness is to be exposed on both sides to an atmosphere of $\mathrm{SiCl}_{4}$ which dissociates to $\mathrm{Si}(\mathrm{g})$ and $\mathrm{Cl}_{2}(\mathrm{~g})$. The $\mathrm{Si}(\mathrm{g})$ dissolves in the steel up to 3 wt . \% Si at equilibrium. Calculate the time necessary for the Si concentration to reach $2.5 \mathrm{wt} . \% \mathrm{Si}$ at the center of the sheet if the diffusivity is $1.5 \times 10^{-12} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ at the processing temperature of 1255 K .
6. A computer simulation of diffusion on a two-dimensional square lattice of screen pixels spaced 0.5 mm apart is carried out. The square simulation cell contains a grid of $101 \times 101$ pixels. Initially there is a vacant site at the center of the cell, identical "red" atoms at all other sites, and at $t=0$ the vacancy begins to execute a random walk of nearest-neighbor exchanges with atoms with a vacancy jump rate of $10,000 \mathrm{~s}^{-1}$.
(a) Estimate the time it will take the vacancy to reach a site at the edge of the simulation cell.
(b) Now the simulation is repeated but a single red atom adjacent to the vacancy at the beginning of the simulation is replaced with a "blue" atom. Estimate the time it will take for the blue atom to reach a site at the edge of the simulation cell. Assume that exchanges of the vacancy with red and blue atoms occur at the same rate of $10,000 \mathrm{~s}^{-1}$.
