Massachusetts Institute of Technology
 Department of Materials Science and Engineering
 77 Massachusetts Avenue, Cambridge MA 02139-4307
 3.205 Thermodynamics and Kinetics of Materials-Fall 2006

November 14, 2006

Assignment 9: Due Tuesday, November 21

Note: Problem \#1 is held over from Assignment 8. If you already answered it well you do not have to re-submit. If you wish to submit a revised answer you are welcome to do so.

1. A computer simulation of diffusion on a two-dimensional square lattice of screen pixels spaced 0.5 mm apart is carried out. The square simulation cell contains a grid of 101×101 pixels. Initially there is a vacant site at the center of the cell, identical "red" atoms at all other sites, and at $t=0$ the vacancy begins to execute a random walk of nearest-neighbor exchanges with atoms with a vacancy jump rate of $10,000 \mathrm{~s}^{-1}$.
(a) Estimate the time it will take the vacancy to reach a site at the edge of the simulation cell.
(b) Now the simulation is repeated but a single red atom adjacent to the vacancy at the beginning of the simulation is replaced with a "blue" atom. Estimate the time it will take for the blue atom to reach a site at the edge of the simulation cell. Assume that exchanges of the vacancy with red and blue atoms occur at the same rate of $10,000 \mathrm{~s}^{-1}$.
2. Please solve exercise 2.9 on page 109 of Porter and Easterling's Phase Transformations in Metals and Alloys.
3. (Ref: P.G. Shewmon, Diffusion in Solids, Second Edition, p. 129.) A jumping particle of a dilute component in an alloy makes a series of n jumps each of length l.
(a) Assuming that the particle executes a random walk, what is the relation between n, l, and the mean squared displacement $\left\langle R^{2}\right\rangle$?
(b) In three totally different experiments it is found that: in one case $\left\langle R^{2}\right\rangle=n l^{2}$, in a second $\left\langle R^{2}\right\rangle=0$ though $n \gg 0$ and $l>0$, and in a third $n l^{2}<\left\langle R^{2}\right\rangle<n^{2} l^{2}$. Explain the different relationships that must exist between the successive jump directions for each of the three cases.
4. (Ref: P.G. Shewmon, Diffusion in Solids, Second Edition, p. 220.) As a diffusion expert you are to calculate the thickness of Ag required to maintain at least a $99 \% \mathrm{Ag}$ alloy on the surface of Cu for 5 years. The most accurate data you can locate is a study of D for Ag in Cu between 750 and $1050^{\circ} \mathrm{C}$. Extrapolating these data to 150°, you find that a 1 micrometer layer of Ag will last for 150 years. A laboratory test shows that a 1 micrometer silver layer completely dissolves in a sample over a weekend at $150^{\circ} \mathrm{C}$. Why might the calculation of the rate at $150^{\circ} \mathrm{C}$ be invalid?
5. In typical solid-state system, $\Delta g_{B}=-2000 \mathrm{~J} / \mathrm{mol}$ and $\gamma=100 \mathrm{~mJ} / \mathrm{m}^{2}$. Calculate the critical size R_{c} and free energy barrier $\Delta \mathcal{G}_{c}$ for homogeneous nucleation under these conditions. Assuming that the material is f.c.c. and has a lattice constant of 0.38 nm , how many atoms are there in the critical nucleus? Compare $\Delta \mathcal{G}_{c}$ to $76 k T$, assuming a nucleation temperature of 800 K . Is homogeneous nucleation likely under these conditions?
