Phase Transformations: Grain Growth; T-T-T Curves

Today's topics:

- Grain growth kinetics in 2- and 3-D
- Kinetics of nucleation and growth transformations: time-temperaturetransformation behavior

Grain growth in polycrystalline materials

- Is capillarity-driven
- Simple models for 2-D grain growth based on a linear velocity-driving force relationship give important results that are also valid in 3D.
- Grain structure in 2-D consists of 2-D grains (\cdot), 1-D grain boundaries (\cdot), and 0-D grain corners (•).

Grain growth in polycrystalline materials

- 2-D growth of an isolated grain contained entirely within a second grain

Figure removed due to copyright restrictions.
See Figure 15.12a in Balluffi, Robert W., Samuel M. Allen, and W. Craig Carter. Kinetics of Materials. Hoboken, NJ: J. Wiley \& Sons, 2005. ISBN: 0471246891.

- Velocity v proportional to driving force

$$
\begin{gathered}
v=M_{B} \gamma\left(\kappa_{1}+\kappa_{2}\right) \\
\frac{d A}{d t}=-\int_{G B} v d s=-\int_{G B} M_{B} \gamma \kappa d s
\end{gathered}
$$

$$
\frac{d A}{d t}=-M_{B} \gamma \int_{G B} \kappa d s=-M_{B} \gamma \int_{G B} \frac{d \theta}{d s} d s=-2 \pi M_{B} \gamma=- \text { constant }!
$$

Grain growth in polycrystalline materials

- 2-D growth of a circular grain contained entirely within a second grain

$$
\begin{gathered}
\frac{d A}{d t}=\frac{d\left(\pi R^{2}\right)}{d t}=2 \pi R \frac{d R}{d t}=-2 \pi M_{B} \gamma \\
R d R=-M_{B} \gamma \\
R^{2}(t)=R^{2}(0)-2 M_{B} \gamma t
\end{gathered}
$$

- Parabolic grain-growth law is predicted, i.e.,

$$
R^{2}(t) \sim t
$$

Grain growth in polycrystalline materials

- 2-D growth of a grain in contact with N neighboring grains

$$
\begin{aligned}
& \frac{d A(N)}{d t}=-M_{B} \gamma\left(\int_{\operatorname{seg} 1} d \theta+\int_{\operatorname{seg} 2} d \theta+\ldots+\int_{\operatorname{seg} N} d \theta\right) \\
& =-M_{B} \gamma(2 \pi-N \Delta \theta) \\
& =M_{B} \gamma \frac{\pi}{\pi}(N-6)
\end{aligned}
$$

Fate of a given grain depends on the number of sides it has!

Also, $\langle R(t)\rangle^{2} \sim t$

Grain growth in polycrystalline materials

- 3-D grain growth is much more complex and there does not seem to be a 3-D analog of the " $\mathrm{N}-6$ " rule in 2-D.

- Grain structure in 3-D consists of 3-D grains, 2-D grain boundaries (\cdot), 1-D grain edges (\cdot), and 0-D grain corners (\cdot).
- Nevertheless, $\langle R(t)\rangle^{2} \sim t$

Time-Temperature-Transformation Curves

- "TTT curves" are a way of plotting transformation kinetics on a plot of temperature vs. time. A point on a curve tells the extent of transformation in a sample that is transformed isothermally at that temperature.
- A TTT diagram usually shows curves that connect points of equal volume fraction transformed.

Time-Temperature-Transformation Curves

- Curves on a TTT diagram have a characteristic "C" shape that is easily understood using phase transformations concepts.

- It is easy to see the temperature at which the transformation kinetics are fastest; this is called the "nose" (\cdot) of the TTT diagram

Time-Temperature-Transformation Curves

- Consider the case of precipitation of a phase β from a supersaturated α solution of composition c_{0}. Let T_{E} be the "solvus" temperature below which the solution becomes supersaturated.
- Close to T_{E}, the driving force
 Δg_{B} is very small so nucleation is very slow.
- The nucleation rate increases at lower T but because nucleation and growth processes involve diffusion, they slow when the temperature gets very low. The "nose" of the TTT curve is at an intermediate temperature.

