PROBLEM SET - 4

Thursday, December 6th, 2007

Problem 1.

In a sample of Si , the electron and hole mobilities are 0.15 and $0.05 \mathrm{~m}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$, respectively. Calculate the room-temperature diffusion co-efficients for electrons and holes, and calculate the diffusion lengths if the lifetime for both types of carriers is $10^{-4} \mathrm{~s}$.

Problem 2.

We form a p-n junction of GaP ($\left.E_{g}=2.25 \mathrm{eV}\right)$ using $N_{A}=10^{18} \mathrm{~cm}^{-3}$ and $N_{D}=10^{16} \mathrm{~cm}^{-3}$. The dielectric constant is 9 , and the effective masses of electrons and holes are 0.35 and 0.5 times the free electron mass, respectively. (a) Calculate the equilibrium junction voltage. (b) Calculate the wavelength at which a transition from opacity to transparency will occur, and the wavelength at which the reverse transition will occur. Sketch the reflectivity vs. wavelength, with these two wavelengths indicated.

Problem 3.

At $\mathrm{t}=0$, a voltage V is applied across a resistance R and a capacitance C connected in series. Derive the time dependence of (a) the current, (b) the voltage across the capacitance, and (c) the voltage across the resistance. (Hint: current $I=\mathrm{d} Q / \mathrm{d} t$)

Problem 4.

Diamond has a dielectric constant of 5.68. Calculate the polarization, electric displacement, and dielectric susceptibility when diamond is exposed to an electric field of $1 \mathrm{~V} / \mathrm{mm}$.

Problem 5.

The dielectric constant of quartz is 3.85 at low frequencies, and its index of refraction for visible light is 1.46 . What fraction of its polarization is ionic (a) at low frequencies (b) at frequencies of visible light?

Problem 6.

Cobalt has a saturation magnetization of $1.4 \times 10^{6} \mathrm{~A} / \mathrm{m}$, and an atomic volume of 6.7 $\mathrm{cm}^{3} /$ mole. (a) What is the magnetic dipole moment of each cobalt atom in Bohr magnetons? (b) You apply a magnetic field in the easy direction with a coil of 10 turns per meter carrying a current of 0.3 mA , and determine that the total field \boldsymbol{B} within the sample is one tesla. Calculate \boldsymbol{M} and determine what percentage of the volume now consists of domains with magnetization parallel to the field.

