Given: e, m₀, c, ε_0 , k_b, h, ħ, a, Z_{Na}^+ , Z_{Cl}^- , n ($n^2 = \varepsilon_\infty$), $\varepsilon_r = \varepsilon_s$

PROBLEM# 1

(a)

$$n = \frac{4 \text{ Na atoms} \times Z_{\text{Na}} + 4 \text{ Cl atoms} \times Z_{\text{Cl}}}{a^3} = \frac{4 \times 1 + 4 \times 7}{a^3} = \frac{32}{a^3} = 2.56 \times 10^{29}$$

$$\sigma = \frac{ne^2 \tau}{m_0} = \frac{32e^2 \tau}{a^3 m_0} \rightarrow \text{ calculate using } \tau = 10^{-14} \text{ s}$$

(b)

 $\mathbf{v}_{\text{max}} = \mathbf{v}_{\text{th}} = \sqrt{\frac{3k_{\text{b}}T}{m_0}} \rightarrow \text{calculate at different T}$

if no field applied then: $v_{avg} = \langle v_{th} \rangle = 0 \rightarrow as$ summed over all directions

if field, E applied then: $v_{avg} = v_{Drift} = \frac{e\tau}{m_0} E$

<u>(c)</u>

In the plane of the NaCl material (x and y directions) we'll have ω_p concept:

 $\omega_{\rm p}^{\rm x-y} = \frac{\rm ne^2}{\rm m_0 \epsilon_0} = \frac{\rm 32e^2}{\rm a^3 m_0 \epsilon_0}$

However, in the direction perpendicular to the plane (z-direction), L = a & therefore light doesn't see much electrons density in this direction. Hence light will pass through z-direction no mater what the frequency is.

3.225

Number of electrons per volume in fermi surface those contribute to the electronic conduction are only at ($E_F \pm k_b T$), let say we represent that by n_F

$$n_{\rm F} = g(E_{\rm F}) \times f(E_{\rm F}) \times 2k_{\rm b}T = k_{\rm b}T \times g(E_{\rm F}) = \frac{0.7k_{\rm b}Tm^*}{\hbar^2 a} = 4.68 \times 10^{20}$$
$$\sigma = \frac{n_{\rm F}e^2\tau_{\rm F}}{m^*} = \frac{k_{\rm b}e^2}{m^*} \times g(E_{\rm F}) \times \tau_{\rm F}T$$

To calculate $\tau_{\rm F}$,

$$k_{F}^{3-d} = (3\pi^{2}n)^{1/3} = \frac{6.71}{a}, n = \frac{32}{a^{3}} \Longrightarrow g^{3-d} (E_{F}) = \frac{m^{*}k_{F}}{\pi^{2}\hbar^{2}} = g(E_{F}) = \frac{0.7m^{*}}{\hbar^{2}a}$$

Plug-in these values into σ and equate it to $\frac{mc}{m_0}$

$$\tau_{\rm F} = 540 \ \tau$$

<u>(b)</u>

$$\mathbf{v}_{\max} = \mathbf{v}_{\mathrm{F}} = \frac{\hbar \mathbf{k}_{\mathrm{F}}}{\mathrm{m}^{*}} = \frac{6.71\hbar}{\mathrm{am}^{*}}, \ \mathbf{E}_{\mathrm{F}} = \frac{\hbar^{2}\mathbf{k}_{\mathrm{F}}^{2}}{2\mathrm{m}^{*}} = \frac{22.5\hbar^{2}}{\mathrm{m}^{*}a^{2}}$$

at T = 0K, $\mathbf{v}_{\mathrm{avg}} = \langle \mathbf{v} \rangle = \frac{\int_{0}^{\mathrm{E}_{\mathrm{F}}} \mathbf{v} \times \mathbf{g}(\mathrm{E}) \mathrm{d}\mathrm{E}}{\int_{0}^{\mathrm{E}_{\mathrm{F}}} \mathbf{g}(\mathrm{E}) \times \mathrm{d}\mathrm{E}}, \ \mathbf{g}(\mathrm{E}) \sim \sqrt{\mathrm{E}}, \ \mathbf{v} \sim \sqrt{\mathrm{E}}$
at T \neq 0K, $\mathbf{v}_{\mathrm{avg}} = \langle \mathbf{v} \rangle = \frac{\int_{0}^{\mathrm{E}_{\mathrm{F}}} \mathbf{v} \times \mathbf{g}(\mathrm{E}) \mathrm{d}\mathrm{E}}{\int_{0}^{\mathrm{E}_{\mathrm{F}} - k_{b}T} \mathbf{v} \times \mathbf{g}(\mathrm{E}) \mathrm{d}\mathrm{E}} + \frac{\int_{\mathrm{E}_{\mathrm{F}} - k_{b}T}^{\mathrm{E}_{\mathrm{F}} + k_{b}T} \mathbf{v} \times \mathbf{g}(\mathrm{E}) \times \mathbf{f}(\mathrm{E}) \mathrm{d}\mathrm{E}}{\int_{0}^{\mathrm{E}_{\mathrm{F}} - k_{b}T} \mathbf{g}(\mathrm{E}) \mathrm{d}\mathrm{E}} + \frac{\int_{\mathrm{E}_{\mathrm{F}} - k_{b}T}^{\mathrm{E}_{\mathrm{F}} + k_{b}T} \mathbf{v} \times \mathbf{g}(\mathrm{E}) \times \mathbf{f}(\mathrm{E}) \mathrm{d}\mathrm{E}}{\int_{\mathrm{E}_{\mathrm{F}} - k_{b}T} \mathbf{g}(\mathrm{E}) \times \mathbf{f}(\mathrm{E}) \mathrm{d}\mathrm{E}}$

<u>(c)</u>

Here again calculate n_F as described above and calculate ω_p using n_F (instead of n as used in problem# 1). In x-y plane, we'll have ω_p concept. However, in z-direction, energy gets quantized (as $2\pi/L \& L = a$ here); therefore lights with right frequencies would get absorbed (if $hv = \Delta E$)

$$\omega_{\rm p}^{\rm x-y} = \frac{n_{\rm F} e^2}{m_0 \varepsilon_0}$$

PROBLEM# 3

(a) Discussed in regits

-Discussed in recitation in detail

Hint: In [100] & [010] directions it is quasi continuous as $2\pi/L$ is very small. In the [001] direction it is discontinuous due to very large $2\pi/L$ (as L = a).

<u>(b)</u>

It is descriptive. Large $U \rightarrow$ in all crystal directions means insulators (as e⁻ can't jump)

<u>(c)</u>

Again descriptive...give values of n_i (~10²⁰), U for a good semiconductor to make the answer impressive. Usually U ~ 1 - 1.5 eV.

4

Calculate the polarizabilities at low frequencies (much before the critical frequency ω_T) Given: ε_s , ε_{∞} , ε_0 , a

N = Number of diapoles per volume=
$$\frac{4}{a^3}$$

$$\frac{\varepsilon_{\rm s} - 1}{\varepsilon_{\rm s} + 2} = \frac{4(\alpha_{\rm ionic} + \alpha_{\rm electronic})}{3\varepsilon_0 a^3} \rightarrow [1]$$
$$\frac{\varepsilon_{\infty} - 1}{\varepsilon_{\infty} + 2} = \frac{4(\alpha_{\rm electronic})}{3\varepsilon_0 a^3} \rightarrow [2]$$

Solve equations [1] and [2] to obtain $\alpha_{electronic}$ and α_{ionic} .

Given: e, m_0 , c, ε_0 , k_b , h, \hbar , A

PROBLEM# 1

(b)

$$k_F^{1-d} = \frac{n\pi}{2}, n = \frac{Z}{a} \Longrightarrow k_F^{1-d} = \frac{Z\pi}{2a}$$

 $E_F^{1-d} = \frac{\hbar^2 k_F^2}{2m} = \frac{\pi^2 \hbar^2}{2ma^2} \frac{Z^2}{4}$

$$\frac{(c)}{\sigma} = \frac{k_{b}e^{2}}{m^{*}} \times g(E_{F}) \times \tau_{F}T, g^{1-d}(E_{F}) = \frac{4ma}{Z\hbar^{2}} \Longrightarrow \sigma = \frac{4k_{b}e^{2}a\tau_{F}T}{Z\hbar^{2}}$$
Use $\tau_{F} \sim 10^{-14}$ s

(f) Discussed in the last recitation (energy gets quantized here)

PROBLEM# 2

 $\begin{array}{c} \underline{(a)} \\ \overline{Zn} \rightarrow p \ type \rightarrow R_{H} + ve \\ Si \rightarrow n \ type \rightarrow R_{H} - ve \end{array}$

<u>(b)</u>

p++-n++ is heavily doped compared to the p-n diode. Absorption coefficient " α " defines how much light gets absorbed by the material (I = I₀ exp (- α x)). Photocurrent is generated in a diode when light gets absorbed. So in a way, absorption coefficient and photocurrent are analogues. This is also similar to plotting R vs w (reflectivity vs. frequency). There are few critical frequencies & few important points:

- Heavily doped material has higher carrier concentration $\rightarrow \omega_p$ increases
- At ω_b (or $2\pi v$) where $hv > E_g \rightarrow light starts getting absorbed \rightarrow transparent to opaque: <math>\omega_b = \frac{E_g}{E_g}$

paque:
$$\omega_b = \frac{\Delta_g}{\hbar}$$

- At ω_p opaque to transparent

PROBLEM# 3

<u>(a)</u>

Given: ε_{s} , ε_{∞} , ε_{0} , ρ , At.wt. of Si and O atoms, Avogadro # (A) $\alpha_{electronic} = \alpha_{Si^{+4}} + 2\alpha_{O^{-2}}$ N = Number of SiO₂ molecules per volume= $\frac{At.Wt. Si + At.Wt. O}{\rho \times A}$

$$\frac{\varepsilon_{s}-1}{\varepsilon_{s}+2} = \frac{N(2\alpha_{ionic}+\alpha_{electronic})}{3\varepsilon_{0}} \rightarrow [1]$$
$$\frac{\varepsilon_{\infty}-1}{\varepsilon_{\infty}+2} = \frac{N(\alpha_{electronic})}{3\varepsilon_{0}} \rightarrow [2]$$

Calculate $\alpha_{electronic}$ and α_{ionic} from these two equations.

<u>(b)</u>

Sketch ε_r vs. w with the critical frequencies ω_T and ω_{oe} (in class notes)

Given: e, m_0 , c, ε_0 , k_b , h, \hbar , A

 $\frac{\text{PROBLEM# 1}}{(a)}$ $k_F^{2-d} = \sqrt{2n\pi}, n = \frac{Z}{a^2} \Longrightarrow k_F^{2-d} = \frac{\sqrt{2\pi Z}}{a}$ $E_F^{2-d} = \frac{\hbar^2 k_F^2}{2m} = Z \frac{\pi \hbar^2}{ma^2}$

<u>(b)</u>

(c)

$$Z = 1$$
: Behaves as a metal
At T = 0K, $\sigma = ne^{2}\tau/m$
At T > 0K, $\sigma = \frac{k_{b}e^{2}}{m^{*}} \times g(E_{F}) \times \tau_{F}T$, $g(E_{F}) = \frac{m^{*}}{\pi\hbar^{2}} = \text{constant}$

$$Z = 2: Behaves as a semimetalAt T = 0K, \sigma << ne2 \tau/m (poor metal)At T > 0K, \sigma = \frac{k_b e^2}{m^*} \times g(E_F) \times \tau_F T, g(E_F) = \frac{m^*}{\pi \hbar^2} (same as Z = 1)$$

$\frac{(d)}{k = \sqrt{2\pi n}, n = \frac{Z}{a^2}}$ Fermi surface $\Rightarrow k^2 \le \frac{2\pi Z}{a^2}$ $\Rightarrow k_x^2 + k_y^2 \le \frac{2\pi Z}{a^2}$ Devide by $\left(\frac{2\pi}{L}\right)^2$, $(L = 8a) \Rightarrow \left(\frac{\pi}{4a}\right)^2$

 $\Rightarrow x^2 + y^2 \le \frac{32Z}{\pi}$

Where (x, y) is the coordinate of different energy states on the Fermi surface.

PROBLEM# 2

$$\frac{(a)}{\sigma} = \frac{ne^2\tau}{m_0}, n \sim 10^{22} \, cm^{-3}, \tau \sim 10^{-14} \, s$$
$$l = v_{th} \times \tau = \sqrt{\frac{3k_b T}{m_0}} \times \tau, \omega_p = \frac{ne^2}{m_0 \varepsilon_0}$$
Draw R vs. λ (=2 π c/ ω)

(b) $a_{Al} \sim 0.4$ nm, compare it to calculated *l*.

Use $\tau = \frac{1}{v_{th}\sigma N}$ (σ is scattering cross section and N is scatterers/volume). $\sigma \sim a$ (lattice parameter). Calculate N for $\tau = 10^{-15}$ s. Describe if that kind of density (which I assume is pretty high) is possible physically or not.

(c)

$$\sigma = \frac{ne^2\tau}{m_0}, n \sim 10^{22} cm^{-3}, \tau \sim 10^{-14} s \Longrightarrow$$
 Similar to Al σ

However, semiconductors don't behave like metals due to band gaps...so wouldn't match with experiment.

PROBLEM# 3

<u>(a)</u> Not sure

<u>(b)</u>

Use equation for width of the depletion region. Instead of V_{bi} , use $(V_{bi} + V_R)$.

PROBLEM# 4

n > 1 due to bound charges Transparent because band gaps in all directions with large U.

Given: e, m_0 , c, ε_0 , k_b , h, \hbar , A

PROBLEM# 1

<u>(a)</u>

$$J=\sigma E, v_D = \mu E, \sigma = \frac{Ze^2\tau}{a^3m_0}$$

Find σ from the J-E plot & find μ from the v_D-E plot. Determine τ (=m μ /e). Calculate Z

<u>(b)</u>

J changes (as $\sigma = ne\mu$ and n is changing here), but v_D remains the same

PROBLEM# 2

Descriptive (follow the lecture notes)

PROBLEM# 3

<u>(a)</u>

Find out ω_b (=2 π v) where hv = E_g. If the yellow light ω range (3.15 × 10¹⁵ -3.27 × 10¹⁵ Hz) falls before ω_b , we can increase ω_p without any limit. Therefore the electrode can be a n type semiconductor. Not that a higher n is better than a higher p as the electron mobilities are 10 times higher than the hole mobilities.

If the yellow light ω range falls after ω_b , then equate ω_p (= $ne^2/m_0\epsilon$) to the minimum yellow light ω and find n. We can find n_i at RT (=298 K) from the given data. If $n > n_i \rightarrow$ n-type or else p-type. So dope accordingly if n- or p-type. Example: Si for n-type and Zn for p-type.

(b) Descriptive

PROBLEM# 4

<u>(a)</u>

