2003

Given: $e, m_{0}, c, \varepsilon_{0}, k_{b}, h, \hbar, a, Z_{N a}{ }^{+}, Z_{C l}{ }^{-}, n\left(n^{2}=\varepsilon_{\infty}\right), \varepsilon_{r}=\varepsilon_{s}$

PROBLEM\# 1

(a)
$\mathrm{n}=\frac{4 \mathrm{Na} \text { atoms } \times \mathrm{Z}_{\mathrm{Na}}+4 \mathrm{Cl} \text { atoms } \times \mathrm{Z}_{\mathrm{Cl}}}{\mathrm{a}^{3}}=\frac{4 \times 1+4 \times 7}{\mathrm{a}^{3}}=\frac{32}{\mathrm{a}^{3}}=2.56 \times 10^{29}$
$\sigma=\frac{\mathrm{ne}^{2} \tau}{\mathrm{~m}_{0}}=\frac{32 \mathrm{e}^{2} \tau}{\mathrm{a}^{3} \mathrm{~m}_{0}} \rightarrow$ calculate using $\tau=10^{-14} \mathrm{~S}$
(b)
$\mathrm{v}_{\text {max }}=\mathrm{v}_{\mathrm{th}}=\sqrt{\frac{3 \mathrm{k}_{\mathrm{b}} \mathrm{T}}{\mathrm{m}_{0}}} \rightarrow$ calculate at different T
if no field applied then: $\mathrm{v}_{\text {avg }}=\left\langle\mathrm{v}_{\mathrm{th}}\right\rangle=0 \rightarrow$ as summed over all directions
if field, E applied then: $v_{\text {avg }}=v_{\text {Drift }}=\frac{e \tau}{m_{0}} E$
(c)

In the plane of the NaCl material (x and y directions) we'll have ω_{p} concept:
$\omega_{\mathrm{p}}^{\mathrm{x}-\mathrm{y}}=\frac{\mathrm{ne}^{2}}{\mathrm{~m}_{0} \varepsilon_{0}}=\frac{32 \mathrm{e}^{2}}{\mathrm{a}^{3} \mathrm{~m}_{0} \varepsilon_{0}}$
However, in the direction perpendicular to the plane (z-direction), $\mathrm{L}=\mathrm{a} \&$ therefore light doesn't see much electrons density in this direction. Hence light will pass through zdirection no mater what the frequency is.

PROBLEM\# 2

(a)

Number of electrons per volume in fermi surface those contribute to the electronic conduction are only at $\left(\mathrm{E}_{\mathrm{F}} \pm \mathrm{k}_{\mathrm{b}} \mathrm{T}\right)$, let say we represent that by n_{F}
$\mathrm{n}_{\mathrm{F}}=\mathrm{g}\left(\mathrm{E}_{\mathrm{F}}\right) \times \mathrm{f}\left(\mathrm{E}_{\mathrm{F}}\right) \times 2 \mathrm{k}_{\mathrm{b}} \mathrm{T}=\mathrm{k}_{\mathrm{b}} \mathrm{T} \times \mathrm{g}\left(\mathrm{E}_{\mathrm{F}}\right)=\frac{0.7 \mathrm{k}_{\mathrm{b}} \mathrm{Tm}^{*}}{\hbar^{2} \mathrm{a}}=4.68 \times 10^{26}$
$\sigma=\frac{\mathrm{n}_{\mathrm{F}} \mathrm{e}^{2} \tau_{\mathrm{F}}}{\mathrm{m}^{*}}=\frac{\mathrm{k}_{\mathrm{b}} \mathrm{e}^{2}}{\mathrm{~m}^{*}} \times \mathrm{g}\left(\mathrm{E}_{\mathrm{F}}\right) \times \tau_{\mathrm{F}} \mathrm{T}$
To calculate τ_{F},
$\mathrm{k}_{\mathrm{F}}^{3-\mathrm{d}}=\left(3 \pi^{2} \mathrm{n}\right)^{1 / 3}=\frac{6.71}{\mathrm{a}}, \mathrm{n}=\frac{32}{\mathrm{a}^{3}} \Rightarrow \mathrm{~g}^{3-\mathrm{d}}\left(\mathrm{E}_{\mathrm{F}}\right)=\frac{\mathrm{m}^{*} \mathrm{k}_{\mathrm{F}}}{\pi^{2} \hbar^{2}}=\mathrm{g}\left(\mathrm{E}_{\mathrm{F}}\right)=\frac{0.7 \mathrm{~m}^{*}}{\hbar^{2} \mathrm{a}}$
Plug-in these values into σ and equate it to $\frac{\mathrm{ne}^{2} \tau}{\mathrm{~m}_{0}}$ $\tau_{\mathrm{F}}=540 \tau$
(b)
$\mathrm{v}_{\max }=\mathrm{v}_{\mathrm{F}}=\frac{\hbar \mathrm{k}_{\mathrm{F}}}{\mathrm{m}^{*}}=\frac{6.71 \hbar}{\mathrm{am}^{*}}, \mathrm{E}_{\mathrm{F}}=\frac{\hbar^{2} \mathrm{k}_{\mathrm{F}}{ }^{2}}{2 \mathrm{~m}^{*}}=\frac{22.5 \hbar^{2}}{\mathrm{~m}^{*} \mathrm{a}^{2}}$
at $T=0 K, v_{\text {avg }}=\langle v\rangle=\frac{\int_{0}^{E_{F}} v \times g(E) d E}{\int_{0}^{E_{F}} g(E) \times d E}, g(E) \sim \sqrt{E}, v \sim \sqrt{E}$
at $\mathrm{T} \neq 0 \mathrm{~K}, \mathrm{v}_{\mathrm{avg}}=\langle\mathrm{v}\rangle=\frac{\int_{0}^{\mathrm{E}_{\mathrm{F}}-k_{b} T} \mathrm{v} \times \mathrm{g}(\mathrm{E}) \mathrm{dE}}{\int_{0}^{\mathrm{E}_{\mathrm{F}}-k_{b} T} \mathrm{~g}(\mathrm{E}) \mathrm{dE}}+\frac{\int_{\mathrm{E}_{\mathrm{F}}-k_{b} T}^{\mathrm{E}_{\mathrm{F}}+k_{b} T} \mathrm{~V} \times \mathrm{g}(\mathrm{E}) \times \mathrm{f}(\mathrm{E}) \mathrm{dE}}{\int_{\mathrm{E}_{\mathrm{F}}-k_{b} T}^{\mathrm{E}_{b} T} \mathrm{~g}(\mathrm{E}) \times \mathrm{f}(\mathrm{E}) \mathrm{dE}}$
(c)

Here again calculate n_{F} as described above and calculate ω_{p} using n_{F} (instead of n as used in problem\# 1). In x-y plane, we'll have ω_{p} concept. However, in z-direction, energy gets quantized (as $2 \pi / \mathrm{L} \& \mathrm{~L}=$ a here); therefore lights with right frequencies would get absorbed (if $\mathrm{h} \nu=\Delta \mathrm{E}$)
$\omega_{\mathrm{p}}^{\mathrm{x}-\mathrm{y}}=\frac{\mathrm{n}_{\mathrm{F}} \mathrm{e}^{2}}{\mathrm{~m}_{0} \varepsilon_{0}}$

PROBLEM\# 3

(a)
-Discussed in recitation in detail
Hint: In [100] \& [010] directions it is quasi continuous as $2 \pi / L$ is very small. In the [001] direction it is discontinuous due to very large $2 \pi / L(a s L=a)$.
(b)

It is descriptive. Large $\mathrm{U} \rightarrow$ in all crystal directions means insulators (as e can’t jump)
(c)

Again descriptive...give values of $n_{i}\left(\sim 10^{20}\right)$, U for a good semiconductor to make the answer impressive. Usually $\mathrm{U} \sim 1-1.5 \mathrm{eV}$.

4
Calculate the polarizabilities at low frequencies (much before the critical frequency ω_{T}) Given: $\varepsilon_{\mathrm{s}}, \varepsilon_{\infty}, \varepsilon_{0}, a$
$\mathrm{N}=$ Number of diapoles per volume $=\frac{4}{\mathrm{a}^{3}}$
$\frac{\varepsilon_{\mathrm{s}}-1}{\varepsilon_{\mathrm{s}}+2}=\frac{4\left(\alpha_{\text {ionic }}+\alpha_{\text {electronic }}\right)}{3 \varepsilon_{0} \mathrm{a}^{3}} \rightarrow[1]$
$\frac{\varepsilon_{\infty}-1}{\varepsilon_{\infty}+2}=\frac{4\left(\alpha_{\text {electronic }}\right)}{3 \varepsilon_{0} \mathrm{a}^{3}} \rightarrow[2]$
Solve equations [1] and [2] to obtain $\alpha_{\text {electronic }}$ and $\alpha_{\text {ionic. }}$.

2004

Given: $e, m_{0}, c, \varepsilon_{0}, k_{b}, h, \hbar, A$

PROBLEM\# 1

(a)

(b)
$k_{F}^{1-d}=\frac{n \pi}{2}, n=\frac{Z}{a} \Rightarrow k_{F}^{1-d}=\frac{Z \pi}{2 a}$
$E_{F}^{1-d}=\frac{\hbar^{2} k_{F}{ }^{2}}{2 m}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}} \frac{Z^{2}}{4}$
(c)
$\sigma=\frac{\mathrm{k}_{\mathrm{b}} \mathrm{e}^{2}}{\mathrm{~m}^{*}} \times \mathrm{g}\left(\mathrm{E}_{\mathrm{F}}\right) \times \tau_{\mathrm{F}} \mathrm{T}, \mathrm{g}^{1-\mathrm{d}}\left(\mathrm{E}_{\mathrm{F}}\right)=\frac{4 m a}{Z \hbar^{2}} \Rightarrow \sigma=\frac{4 \mathrm{k}_{\mathrm{b}} e^{2} a \tau_{\mathrm{F}} \mathrm{T}}{Z \hbar^{2}}$
Use $\tau_{\mathrm{F}} \sim 10^{-14} \mathrm{~s}$
(d)

(e)
$\mathrm{Z}=2$ (semimetal to semiconductor)

(f)

Discussed in the last recitation (energy gets quantized here)

PROBLEM\# 2

(a)
$\mathrm{Zn} \rightarrow \mathrm{p}$ type $\rightarrow \mathrm{R}_{\mathrm{H}}+\mathrm{ve}$
$\mathrm{Si} \rightarrow \mathrm{n}$ type $\rightarrow \mathrm{R}_{\mathrm{H}}-\mathrm{ve}$
(b)
p++-n++ is heavily doped compared to the p-n diode. Absorption coefficient " α " defines how much light gets absorbed by the material ($\mathrm{I}=\mathrm{I}_{0} \exp (-\alpha \mathrm{x})$). Photocurrent is generated in a diode when light gets absorbed. So in a way, absorption coefficient and photocurrent are analogues. This is also similar to plotting R vs w (reflectivity vs. frequency). There are few critical frequencies \& few important points:

- Heavily doped material has higher carrier concentration $\rightarrow \omega_{p}$ increases
- At ω_{b} (or $2 \pi v$) where $\mathrm{h} v>\mathrm{E}_{\mathrm{g}} \rightarrow$ light starts getting absorbed \rightarrow transparent to opaque: $\omega_{b}=\frac{E_{g}}{\hbar}$
- At ω_{p} opaque to transparent

PROBLEM\# 3

(a)

Given: $\varepsilon_{\mathrm{s}}, \varepsilon_{\infty}, \varepsilon_{0}, \rho$, At.wt. of Si and O atoms, Avogadro \# (A)
$\alpha_{\text {electronic }}=\alpha_{\mathrm{Si}^{+4}}+2 \alpha_{\mathrm{O}^{-2}}$
$\mathrm{N}=$ Number of SiO_{2} molecules per volume $=\frac{\text { At.Wt. } \mathrm{Si}+\mathrm{At} . \mathrm{Wt} . \mathrm{O}}{\rho \times \mathrm{A}}$
$\frac{\varepsilon_{\mathrm{s}}-1}{\varepsilon_{\mathrm{s}}+2}=\frac{\mathrm{N}\left(2 \alpha_{\text {ionic }}+\alpha_{\text {electronic }}\right)}{3 \varepsilon_{0}} \rightarrow[1]$
$\frac{\varepsilon_{\infty}-1}{\varepsilon_{\infty}+2}=\frac{N\left(\alpha_{\text {electronic }}\right)}{3 \varepsilon_{0}} \rightarrow[2]$
Calculate $\alpha_{\text {electronic }}$ and $\alpha_{\text {ionic }}$ from these two equations.
(b)

Sketch ε_{r} vs. W with the critical frequencies ω_{T} and ω_{oe} (in class notes)

2005

Given: $e, m_{0}, c, \varepsilon_{0}, k_{b}, h, \hbar, A$

PROBLEM\# 1

(a)
$k_{F}^{2-d}=\sqrt{2 n \pi}, n=\frac{Z}{a^{2}} \Rightarrow k_{F}^{2-d}=\frac{\sqrt{2 \pi Z}}{a}$
$E_{F}{ }^{2-d}=\frac{\hbar^{2} k_{F}{ }^{2}}{2 m}=Z \frac{\pi \hbar^{2}}{m a^{2}}$
(b)

(c)
$\mathrm{Z}=1$: Behaves as a metal
At T $=0 \mathrm{~K}, \sigma=\mathrm{ne}^{2} \tau / \mathrm{m}$
At $\mathrm{T}>0 \mathrm{~K}, \sigma=\frac{\mathrm{k}_{\mathrm{b}} \mathrm{e}^{2}}{\mathrm{~m}^{*}} \times \mathrm{g}\left(\mathrm{E}_{\mathrm{F}}\right) \times \tau_{\mathrm{F}} \mathrm{T}, \mathrm{g}\left(\mathrm{E}_{\mathrm{F}}\right)=\frac{m^{*}}{\pi \hbar^{2}}=$ constant
$\mathrm{Z}=2$: Behaves as a semimetal
At $\mathrm{T}=0 \mathrm{~K}, \sigma \ll \mathrm{ne}^{2} \tau / \mathrm{m}$ (poor metal)
At $\mathrm{T}>0 \mathrm{~K}, \sigma=\frac{\mathrm{k}_{\mathrm{b}} \mathrm{e}^{2}}{\mathrm{~m}^{*}} \times \mathrm{g}\left(\mathrm{E}_{\mathrm{F}}\right) \times \tau_{\mathrm{F}} \mathrm{T}, \mathrm{g}\left(\mathrm{E}_{\mathrm{F}}\right)=\frac{m^{*}}{\pi \hbar^{2}}($ same as $\mathrm{Z}=1)$
(d)
$\mathrm{k}=\sqrt{2 \pi \mathrm{n}}, \mathrm{n}=\frac{\mathrm{Z}}{\mathrm{a}^{2}}$
Fermi surface $\Rightarrow \mathrm{k}^{2} \leq \frac{2 \pi \mathrm{Z}}{\mathrm{a}^{2}}$
$\Rightarrow \mathrm{k}_{\mathrm{x}}^{2}+\mathrm{k}_{\mathrm{y}}^{2} \leq \frac{2 \pi \mathrm{Z}}{\mathrm{a}^{2}}$
Devide by $\left(\frac{2 \pi}{L}\right)^{2},(L=8 a) \Rightarrow\left(\frac{\pi}{4 a}\right)^{2}$
$\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2} \leq \frac{32 \mathrm{Z}}{\pi}$
Where (x, y) is the coordinate of different energy states on the Fermi surface.

PROBLEM\# 2

(a)
$\sigma=\frac{n e^{2} \tau}{m_{0}}, n \sim 10^{22} \mathrm{~cm}^{-3}, \tau \sim 10^{-14} \mathrm{~s}$
$l=v_{t h} \times \tau=\sqrt{\frac{3 k_{b} T}{m_{0}}} \times \tau, \omega_{p}=\frac{n e^{2}}{m_{0} \varepsilon_{0}}$
Draw R vs. $\lambda(=2 \pi \mathrm{c} / \omega)$
(b)
$\mathrm{a}_{\mathrm{Al}} \sim 0.4 \mathrm{~nm}$, compare it to calculated l.
Use $\tau=\frac{1}{\mathrm{v}_{\mathrm{th}} \sigma \mathrm{N}}$ (σ is scattering cross section and N is scatterers/volume). $\sigma \sim$ a (lattice parameter). Calculate N for $\tau=10^{-15} \mathrm{~s}$. Describe if that kind of density (which I assume is pretty high) is possible physically or not.
(c)
$\sigma=\frac{n e^{2} \tau}{m_{0}}, n \sim 10^{22} \mathrm{~cm}^{-3}, \tau \sim 10^{-14} \mathrm{~s}=>$ Similar to $\mathrm{Al} \sigma$
However, semiconductors don't behave like metals due to band gaps...so wouldn't match with experiment.

PROBLEM\# 3

(a)

Not sure
(b)

Use equation for width of the depletion region. Instead of $V_{b i}$, $u s e\left(V_{b i}+V_{R}\right)$.

PROBLEM\# 4

$\mathrm{n}>1$ due to bound charges
Transparent because band gaps in all directions with large U .

2006

Given: $e, m_{0}, c, \varepsilon_{0}, k_{b}, h, \hbar, A$
PROBLEM\# 1
(a)
$\mathrm{J}=\sigma \mathrm{E}, \mathrm{v}_{\mathrm{D}}=\mu \mathrm{E}, \sigma=\frac{\mathrm{Ze}^{2} \tau}{\mathrm{a}^{3} \mathrm{~m}_{0}}$
Find σ from the J-E plot \& find μ from the $v_{D}-E$ plot. Determine $\tau(=m \mu / e)$. Calculate Z
(b)
J changes (as $\sigma=n e \mu$ and n is changing here), but v_{D} remains the same
PROBLEM\# 2
Descriptive (follow the lecture notes)

PROBLEM\# 3

(a)

Find out $\omega_{\mathrm{b}}(=2 \pi v)$ where $\mathrm{h} v=\mathrm{E}_{\mathrm{g}}$. If the yellow light ω range $\left(3.15 \times 10^{15}-3.27 \times 10^{15}\right.$ Hz) falls before ω_{b}, we can increase ω_{p} without any limit. Therefore the electrode can be a n type semiconductor. Not that a higher n is better than a higher p as the electron mobilities are 10 times higher than the hole mobilities.

If the yellow light ω range falls after ω_{b}, then equate $\omega_{\mathrm{p}}\left(=\mathrm{ne}^{2} / \mathrm{m}_{0} \varepsilon\right)$ to the minimum yellow light ω and find n. We can find n_{i} at RT ($=298 \mathrm{~K}$) from the given data. If $n>n_{i} \rightarrow$ n-type or else p-type. So dope accordingly if n- or p-type. Example: Si for n-type and Zn for p -type.
(b)

Descriptive

PROBLEM\# 4

(a)

(b)

Descrptive

