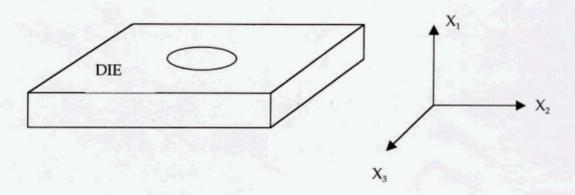
3.225 Electronic and Mechanical Properties of Materials Professor Lorna Gibson Test 1: Elasticity, Viscoelasticity and Plasticity October 21, 2003


1. (a) Prove the reciprocal relation:

$$v_{12}E_2 = v_{21}E_1$$

taking the Poisson's ratio as:

$$v_{12} = -\frac{\varepsilon_2}{\varepsilon_1}$$
 under a uniaxial stress in the x_1 direction

(b) A rigid die is designed to take a cylindrical specimen. A transversely isotropic specimen is placed into the die such that the isotropic plane (X₂-X₃) is normal to the axial direction of the cylinder, X₁. The specimen is loaded in the axial direction (X₁) and remains elastic throughout the loading. The elastic constants of the material of the specimen give a hydrostatic stress state in the specimen. How are the elastic constants E₁, E₂, v₁₂ and v₃₂ related?

(c) What gives rise to the linear relationship between stress and strain for crystalline materials at small strains?

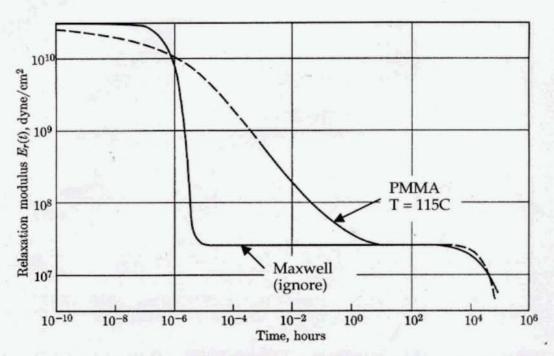


Fig. 6.25. Comparison of double Maxwell model with relaxation behavior of PMMA at 115°C, from Fig. 6.24.

Shift twice 115 -> 100

8

- 3. (a) A wire drawing die is used to reduce the diameter of a wire from 0.2" to 0.18". The wire is fed into the die (at the 0.2" diameter end) at a rate of 1" per minute. What is the rate at which the wire exits the die?
- (b) A circular bilayer plate has a thin film of one material, with a Young's modulus of E_1 , a yield strength σ_{y1} and a coefficient of thermal expansion of α_1 , on a thick substrate (with properties E_2 , σ_{y2} and α_2) is heated by ΔT above the temperature at which the bilayer is stress-free. Find the ΔT to initiate yielding in the thin film using the von Mises criterion.
- (c) Given the stress field around a screw dislocation is $\sigma_{\theta z} = \frac{Gb}{2\pi r}$, calculate the elastic strain energy per unit length of dislocation line.

4

der in class

DV=D

0	3.225 TEST.
1.	BProve V12 E2 = V2, E,
	$S_{12} = S_{21}$ apply σ_1 $E_1 = S_{11} \sigma_1$
	$\epsilon_2 = S_{21} \sigma_1$
	$\frac{V_{12} = -\epsilon_2 = -S_{21}}{\epsilon_1}$ $S_{21} = -V_{12}$
	$S_{21} = -V_{12}$ $\overline{E_{1}}$
0	apply σ_2 $\epsilon_2 = S_{22} \sigma_2$ $\epsilon_1 = S_{12} \sigma_2$
	$\frac{y_{21} = -E_1 - S_{12}}{E_2}$
	$S_{12} = -V_{21}$ E_2
	$S_{12} = S_{21}$
	$\frac{1}{E_1} = \frac{V_{21}}{E_2}$
	7 V12 E2 = V2, E1

16 RIGID DIE = Ez = Ez = 0; 52 = 53

Eg = Szio, + Szoz+ Szzoz, = 0.

 $\frac{-\sqrt{12}}{E_1}\frac{\sigma_1}{E_2} + \frac{1}{E_2}\frac{\sigma_2}{E_2} - \frac{\sqrt{32}}{E_2}\frac{\sigma_2}{E_2} = 0$

 $\frac{1}{E_1} = \frac{\sigma_2}{E_2} \left(1 - v_{32} \right)$

 $\frac{\sigma_1}{\sigma_2} = \frac{E_1}{E_2} \frac{\left(1 - V_{32}\right)}{V_{12}}$

= $0.5_1 = 5_2$ For $E_1(1-V_{32}) = E_2V_{n}$. $(=5_3)$

evergy - separation diagram (1(1)

minimum energy @ 1=10

force - separation diagram

at small strains Fxr D OXE

= Hooke's Law.

2. PMMA Tg = 100°C

given E, (+) @ T = 115°C

E, (+) @ T = 120°C =?

Shift factor: $\log \alpha_T = \frac{C_1(T-T_0)}{C_2+T-T_0} = \frac{\log (t_T)}{(t_{T_0})}$

G= -17.44 G= 51.6

8hiff from T = 115°C to Tg = 100°C = 388°K = 373°C

 $\log \left(\frac{t_{115}}{t_{13}}\right) = \frac{-17.44 \left(388 - 373\right)}{51.6 + 388 - 373} = \frac{-261.6}{66.6} = \frac{-8.93}{66.6}$

 $t_{115} = 10^{-3.93} = 1.17 \times 10^{-4}$ t_{19}

tus = 1.17×10-4 x trg tro = tus (1.17×10-4)

 $\log\left(\frac{t_{120}}{t_{Tg}}\right) = \frac{-17.44.(393 - 373)}{51.6 + 393 - 373} = \frac{-348.8}{71.6} = \frac{-4.87}{71.6}$

 $t_{120} = 1.34 \times 10^{-5} t_{Tg} = (1.34 \times 10^{-5}) t_{115}$ $t_{120} = 0.11 t_{115}$

7	
0	
# 3(a)	A
	0.2"
	♦
	$\frac{1}{V=1''/min} = \frac{1}{V=2}$
	VOLUME = CONSTANT
	IN TIME ST, A LENGTH DXIN (= VIN ST) MOVES ALONG LHS.
410000000000000000000000000000000000000	THIS IS EQUIVALENT TO A VOLUME OXIN TI (0.2)2
	4.
	IN SAME THE ST, A CONGTH DX at (= Vant St) MOUS
	ALONG BHS. THIS IS FOUNDAMENT TO A VOLUME DX TO 18
	4
	· · · \/o
	VOLUME = CONSTANT
	$\Delta x = \pi (0.2)^2$ $\Delta x + \pi (0.18)^2$
	$\frac{\Delta \times in \ T \left(0.2\right)^2}{4} = \frac{\Delta \times int \ T \left(0.18\right)^2}{4}$
Monte control of the	
	Vin St (0.2)2 = Vant St (0.18)2
6-	
	$V_{\text{out}} = \left(\frac{1}{mn}\right) \left(\frac{0.2}{0.18}\right)^2 = 1.23 \text{ in /min}.$
The state of the s	(mw) v 0 18 1

BILAMER PLATE: DT 36. $\sigma_1 = \sigma_2 = \sigma$ $(\sigma_3 = 0)$ VON MISES: $\sigma_e = \sqrt{\frac{1}{2}[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2]} = \sigma_y$ $\sigma_{e} = \frac{1}{2} [(0) + \sigma^{2} + \sigma^{2}] = \sigma = \sigma_{y}$ $E_1 = \overline{r_1} - \overline{r_2} = \overline{r_1} - \overline{r_2} = \overline{r_2} - \overline{r_2} = \overline{r_$ $\Delta T = \sigma_y (1-v)$ E (x, -x)J ET (2 - 4) T - T)

0	
3(c)	TOZ = GB FOR SCHON DISLOCATION.
	$\frac{u^{el}}{L} = \frac{?}{2} \frac{du^{el}}{G} = \frac{1}{2} \frac{\sqrt{502}}{G} \frac{dV}{dV}$ $\frac{dV}{dV} = 2\pi V L \frac{dV}{dV}.$
<u> </u>	$= \frac{G l_0^2}{4 \pi} \int_{r_0}^{\ell} \frac{dr}{r}$
	= G62 ln(Po/r) -4TT
	$= \kappa G \delta^2 \cdot \kappa \wedge 0.5 + \delta \cdot 1.0 \cdot$