
Dielectric and Optical Properties 
•	 As with conductivity, we will start with macroscopic property and 

connect to the microscopic 
•	 All aspects of free electrons have been covered: only bound electrons left 
•	 Capacitance, Optical properties --> ε,n --> molecules and atoms 

Review of capacitance and connection to dielectric constant 
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The Capacitor 
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The Capacitor

• The air-gap can store energy! 
• If we can move charge temporarily without current flow, can store even more 
• Bound charge around ion cores in a material can lead to dielectric properties 
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Image from Wikimedia Commons, http://commons.wikimedia.org
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Material Polarization
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E d 

E '= P 
D = ε E + P = εE P is the Polarization 

o 
D is the Electric flux density or the Dielectric

ε = ε rεo displacement 
P χ is the dielectric or electric susceptibility

ε = 1+ = 1+ χr ε Eo 

All detail of material response is in εr and therefore P 
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Origin of Polarization


•	 We are interested in the true dipoles creating polarization in materials (not 
surface effect) 

•	 As with the free electrons, what is the response of these various dipole 
mechanisms to various E-field frequencies? 

•	 When do we have to worry about controlling 
–	 molecular polarization (molecule may have non-uniform electron density) 
–	 ionic polarization (E-field may distort ion positions and temporarily create dipoles) 
–	 electronic polarization (bound electrons around ion cores could distort and lead to 

polarization) 
•	 Except for the electronic polarization, we might expect the other mechanisms 

to operate at lower frequencies, since the units are much more massive 
•	 What are the applications that use waves in materials for frequencies below the 

visible? 
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Courtesy of the Opensource Handbook of Nanoscience and Nanotechnology,
http://en.wikibooks.org/wiki/Nanotechnology

In communications, many E-M waves travel in insulating materials: 
What is the response of the material (εr) to these waves? 

Application for different E-M Frequencies
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Wave Eqn. With Insulating Material and 

Polarization
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Compare Optical (index of refraction) 

and Electrical Measurements of ε


Material Optical, n2 Electrical, ε 

diamond 5.66 5.68 Only electrical polariztion 

NaCl 2.25 5.9 Electrical and ionic polariztion 

H2O 1.77 80.4 Electrical, ionic, and 
molecular polariztion 

Polarization that is active depends on material and frequency
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Microscopic Frequency Response of 

Materials


•	 Bound charge can create dipole through charge displacement 
•	 Hydrodynamic equation (Newtonian representation) will now have a 

restoring force 
•	 Review of dipole physics: 
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Dipole moment: p r = qd 
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Applied E-field rotates dipole to align with field: 

Torque τ
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Microscopic Frequency Response of 

Materials


• For a material with many dipoles: 

P 
r 
= Np r = NαE 

r 
( p r =αE 

r 
) 

(polarization=(#/vol)*dipole polarization) 
α=polarizability

r 
P 

χ = r , so χ = Nα 
ε Eo 

p r =αE 
r 

Actually works well only for low density of dipoles, i.e. gases: little screening 

For solids where there can be a high density: local field


For a spherical volume inside (theory of local field), 
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Microscopic Frequency Response of 

Materials


•	 We now need to derive a new relationship between the dielectric constant and 
the polarizability 

D = ε rε oEext = ε o Eext + P 
P = ε rε o Eext −ε o Eext 

⎛ 2 + ε r ⎞Eloc = Eext ⎜ ⎟ 
⎝ 3 ⎠ 

Plugging into P=Nα Eloc: 

(ε r + 2)ε rε o Eext − ε o Eext = Nα Eext3 

(ε r − 1)ε o = 
Nα (ε r + 2)
3


ε − 1 Nα α 
Clausius-Mosotti Relation: 

r = = Where v is the volume per dipole (1/N) 
ε + 2 3ε 3νεr o o 

Macro Micro 11 
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Different Types of Polarizability 
Highest natural frequency	 Lightest mass 

• Atomic or electronic,αe 

• Displacement or ionic, αi 

• Orientational or dipolar, αoLowest natural frequency	 Heaviest mass 

α =αe +α i +αo 

As with free e-, we want to look at the time dependence of the E-field: E = E e−iωt 
o 

∂2 x m ∂x m 2 = − eE − Kx 
∂t τ ∂t Restoring Force 

Response Drag Driving 
Force 

m&x& = −eE − Kx 
−iωtx = x eo 

m(−ω 2 )xo = −eEo − Kxo So lighter mass will have a 
eEo eEo higher critical frequencyx =	 = o	 2 2⎛ 2 K ⎞ m(ω −ωo )m	⎜ω − ⎟
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Classical Model for Electronic Polarizability


• Electron shell around atom is attached to nucleus via springs 
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Electronic Polarizability 
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QM Electronic Polarizability 

• At the atomic electron level, QM expected: electron waves 
• QM gives same answer qualitatively 
• QM exact answer very difficult: many-bodied problem 

2E1 
αe ( )ω = 

e f10 ; ω10 = 
E1 − E0 

m ω 2 −ω 2 h
E0 

10 

f10 is the oscillator strength of the transition (ψ1 couples to ψo by E-field) 

For an atom with multiple electrons in multiple levels: 
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Ionic Polarizability 
• Problem reduces to one similar to the electronic polarizability 
• Critical frequency will be less than electronic since ions are more massive 
• The restoring force between ion positions is the interatomic potential 

E(R) 
Parabolic at bottom near Ro 

k(R − Ro )
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Electron bonding in between ions 

F = kx ⇒σ ij = Cijklε kl 
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Ionic Polarizability
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Ionic Polarizability 
• Usually Clausius-Mosotti necessary due to high density of dipoles 
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Orientational Polarizability


•	 No restoring force: analogous to conductivity

H C +q


O H O O	 θ 

+ p=0	 -q- p 
For a group of many molecules at some temperature: 

− U pE cosθ 

f = e kbT = e	 kbT 

Analogous to conductivity, the 
molecules collide after a certain After averaging over the polarization of the 
time t, giving: ensemble molecules (valid for low E-fields): 
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