Magnetic Materials

• The inductor

$$\nabla \times E = -\frac{1}{c} \frac{\partial B}{\partial t} (CGS)$$

$$\int \int \nabla \times EdS = -\frac{1}{c} \frac{\partial}{\partial t} (\int \int BdS) = -\frac{1}{c} \frac{\partial \Phi_B}{\partial t}$$

$$\Phi_B = \text{magnetic flux density}$$

$$\int \int \nabla \times EdS = \oint E \cdot d\ell \text{ (Green's Theorem)}$$

$$V = \int E \cdot d\ell = -\frac{1}{c} \frac{\partial \Phi_B}{\partial t} \text{ (explicit Faraday's Law)}$$

$$\Phi_B = \text{magnetic flux density}$$

$$V = \int E \cdot d\ell = -\frac{1}{c} \frac{\partial \Phi_B}{\partial t} \text{ (explicit Faraday's Law)}$$

$$\Phi_B = LI (Q = CV)$$

$$\frac{\partial \Phi_B}{\partial t} = L \frac{\partial I}{\partial t}$$

$$V_{EMF} = -\frac{\partial N \Phi_B}{\partial t} = -L \frac{\partial I}{\partial t}$$

$$V = L \frac{\partial I}{\partial t} \text{ (recall } I = C \frac{\partial V}{\partial t} \text{ for the capacitor)}$$

$$Power = VI = LI \frac{\partial I}{\partial t}$$

$$Energy = \int Power \cdot dt = \int LIdI = \frac{1}{2}LI^2 = \frac{1}{2}N\Phi_B I$$

$$\left(capacitor \ \frac{1}{2}CV^2\right)$$

1

The Inductor

$$\nabla \times B = \frac{4\pi}{c}J + \frac{1}{c}\frac{\partial E}{\partial t}$$
$$\int \int \nabla \times B dS = \oint B \cdot d\ell = \frac{4\pi}{c}\int \int J \cdot dS = \frac{4\pi}{c}I$$
$$B = \frac{4\pi}{c}In$$
$$N = n \cdot length = nl$$
$$L = \frac{N\phi_B}{I} = \frac{N(BA)}{I} = \frac{4\pi}{c}n^2lA$$

Insert magnetic material

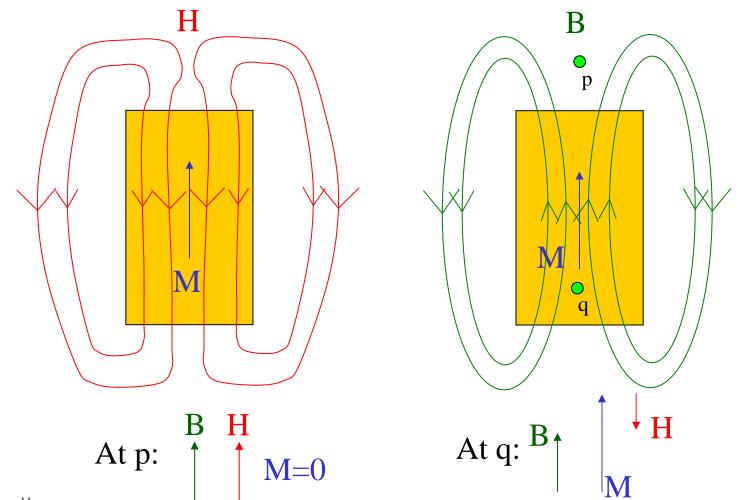
Magnetic dipoles in material can line-up in magnetic field

$$B = H + 4\pi\chi H = H + 4\pi M$$
$$M = \chi H \quad \frac{\partial M}{\partial H} = \chi \quad \mu = 1 + 4\pi\chi$$
$$B = 4\pi M + 1 \quad B = \mu H$$

B magnetic induction χ magnetic susceptibility H magnetic field strength (applied field) M magnetization

H and B

• H has the possibility of switching directions when leaving the material; B is always continuous



3

Maxwell and Magnetic Materials

• Ampere's law
$$\oint H \cdot d\ell = I = 0$$

- For a permanent magnet, there is no real current flow; if we use B, there is a need for a fictitious current (magnetization current)
- Magnetic material inserted inside inductor increases inductance

$$\Phi_{B} = BA \sim 4\pi MA = 4\pi \chi HA = 4\pi \chi \left(\frac{4\pi}{c} \ln\right)A$$
$$L = \frac{N\Phi_{B}}{I} = \frac{(4\pi)^{2}}{c} n^{2} lA \chi$$
$$L \text{ increased by } \sim \chi \text{ due to}$$

L increased by $\sim \chi$ due to magnetic material

Material Type
$$\chi$$
Paramagnetic $+10^{-5}-10^{-4}$ Diamagnetic $-10^{-8}-10^{-5}$ Ferromagnetic $+10^5$

Microscopic Source of Magnetization

- No monopoles
- magnetic dipole comes from moving or spinning electrons

Orbital Angular Momentum

A

 μ µ is the magnetic dipole moment

$$Energy = E = -\vec{\mu} \cdot \vec{H} = -|\mu||H|\cos\theta$$

What is μ ? For $\theta = 0$, $E = -\mu H \approx -\Phi_B I$ since energy ~ LI^2 and for $1 \operatorname{loop} L = \frac{\Phi_B}{I}$ $\Phi_B = \iint H \cdot dS \sim HA$ $\therefore \mu H = \Phi_B I = HAI$ and $\therefore \mu = IA$ $I = -\frac{e}{c} \frac{\omega}{2\pi} A = \pi r^2$ $\mu = -\frac{e}{2c} \omega r^2$

Microscopic Source of Magnetization

• Classical mechanics gives orbital angular momentum as:

$$\vec{L} = \vec{r} \times \vec{p} = mr^{2}\omega$$

$$\mu_{L} = -\frac{e}{2mc}L_{QM} = -\frac{e\hbar}{2mc}L_{Z} = -\mu_{B}L_{Z}$$
Example for l=1:

$$\begin{pmatrix} \mu_{B} = \frac{e\hbar}{2mc} \end{pmatrix}$$
Example for l=1:

$$\begin{pmatrix} \mu_{B} = \frac{e\hbar}{2mc} \end{pmatrix}$$
Example for l=1:

$$\begin{pmatrix} \mu_{B} = \frac{e\hbar}{2mc} \end{pmatrix}$$
Example for l=1:

$$\vec{L} = m_{\ell} = -\ell, ..., 0, ..., \ell$$
Example for l=1:

$$\vec{L} = 0$$

$$\vec{L}_{Z} = m_{\ell} = -\ell, ..., 0, ..., \ell$$
Figure 4 and 5 a

Total Energy Change for Bound Electron in Magnetic Field

• Simple addition of energies if spin-orbital coupling did *not* exist

$$E = -\vec{\mu} \cdot \vec{H} = \mu_B (L_Z + g_0 S_Z) H = \mu_T H$$

But spin-orbit coupling changes things such that:

$$\mu_T \neq \mu_B (L_Z + g_0 S_Z) = \mu_B J_Z$$

QM definitions:

$$\mu_{T} = g\mu_{B}J_{Z}$$

$$L = \hbar L_{Z} = \hbar m_{\ell}$$

$$S = \hbar S_{Z} = \hbar m_{s}$$

$$J = L + S$$

$$J = \hbar J_{Z}$$

$$\mu_{T} = g\mu_{B}J_{Z}$$

$$g = \frac{3}{2} + \frac{1}{2} \left[\frac{S(S+1) - L(L+1)}{J(J+1)} \right]$$

$$E = -\vec{\mu}_{T} \cdot \vec{H} = g\mu_{B}J_{Z}H$$

Total Energy Change for Bound Electron in Magnetic Field

• Kinetic energy from Lorentz force has not been included

$$p_{H} = -\frac{e}{2c}\vec{r} \times \vec{H}$$
Lorentz for circular orbit
Energy change $= \frac{p^{2}}{2m} = \frac{e^{2}}{8mc^{2}}(\vec{r} \times \vec{H}) \cdot (\vec{r} \times \vec{H})$

2

For the plane perpendicular to H and assuming circular orbit:

Energy change
$$= \frac{e^2}{8mc^2} r^2 H^2 = \frac{e^2}{8mc^2} (x^2 + y^2) H$$

 $\therefore \Delta E_{TOT} = g\mu_B H J_Z + \frac{e^2}{8mc^2} H^2 (x^2 + y^2)$

Numbers: $\mu_B H$ for for H=10⁻⁴ Gauss H=10⁻⁴ Gauss =10⁻⁴ eV =10⁻⁹ eV

The Lorentz effect is minimal with respect to magnetic moment interaction, if it exists

Atoms with Filled Shells

- J=0 (L=0, S=0)
- Only Lorentz contribution $\Delta E = \frac{e^2}{8mc^2} H^2 (x^2 + y^2)$
- Leads to *diamagnetism*

Need to sum over all e- in atom:

$$\Delta E_{atom} = \frac{e^2}{12mc^2} H^2 \frac{2}{3} \sum_i r_i^2 \quad \text{(for a spherical shells)}$$

$$\chi = -\frac{N}{V} \frac{\partial^2 E}{\partial H^2}$$

$$\left(M = -\frac{1}{V} \frac{\partial E}{\partial H} \quad \chi = \frac{\partial M}{\partial H}\right)$$

$$\chi = -\frac{e^2}{6mc^2} \frac{N}{V} \sum_i r_i^2 = -\frac{e^2}{6mc^2} \frac{N}{V} \langle r^2 \rangle Z_i$$

$$\chi = -\frac{e^2}{6mc^2} \frac{N}{V} \langle r^2 \rangle Z_i \qquad \sim -10^{-5}$$

Atoms with Partially Filled Shells

- J not zero
- Need Hund's rules from QM
 - Fill levels with same ms to maximize spin
 - maximize L (first e- goes in largest l)
 - J = |L-S| for n<=(21+1), J=|L+S| for n>(21+1)
- Conventional notation: $(2S+1)X_I$ X_I X S P D F G H I
- J=0 when L and S are not zero is a special case
 - 2nd order effect--> perturbation theory
- Partially filled shells give atoms *paramagnetic* behavior

$$\Delta E = g\mu_B H J_Z$$

(+10⁻²-10⁻³>10⁻⁹ eV for diamagnetic component)

ď	-shell (l = l	2)									
n	$l_x = 2,$	1,	0,	-1,	-2,			S	$L = \Sigma l_x $	J	Symbol	
1	Ļ							1/2	2	3/2 7	$^{2}D_{3/2}$	Sc
2	ļ	- t						1	3	2	$^{3}F_{2}$	Ti
3	ļ	- t	- t					3/2	3	3/2 J = L - S	$^{4}F_{3/2}$	V
4		Į.	Ļ	Ļ				2	2	$_0$ \square	${}^{5}D_{4}$ ${}^{6}S_{5/2}$	Cr
5		۰.	Ļ	÷.	Ļ			5/2	0	5/2	${}^{6}S_{5/2}$	Mn
6	l i t	<u></u>	1	t.	1			2	2	4 7	$^{5}D_{4}$	Fe
7	l III	-tt	1	1	1			3/2	3	9/2 $J=L+S$	${}^{4}F_{9/2}$	Co
8	l II.	- <u>t</u> t	<u>H</u>	- <u>†</u> -	1			1	3 2	4	$\begin{bmatrix} {}^{3}F_{4} \\ {}^{2}D_{5/2} \\ {}^{1}S_{4} \end{bmatrix}$	Ni
9	[- ţţ -	- <u>I</u> t		1			1/2		5/2	$^{2}D_{5/2}$	Cu
10	<u> </u>	<u></u>	<u>+1</u>	<u>+1</u>	<u>+1</u>			0	0	0	$^{1}S_{4}$	Zn
f-	shell (l=2)									
n	$l_z = 3$,	2,	1,	0,	-1,	-2,	-2,	S	$L = \Sigma l_z $	J		
1	Ļ							1/2	3	5/2	$^{2}F_{5/2}$	
2	ļ	4						1	5	4	$^{3}H_{4}$	Ce
	ļ	4	1					3/2	6	9/2 J = L - S	$^{4}I_{0/2}$	Pr
3 4	ļ	۰.	÷.	ļ.				2	6	4	$5I_{4}^{5}$	Nd
5		+	+	+	Ļ			5/2	5	5/2	$5I_4$ $6H_{5/1}$	Pm
6		+		+	+	+		3	3	0	$ F_{c} $	Sm
7		+	÷.	+	÷.	+	-	7/2	0	7/2	$^{8}S_{7/1}$	Eu
8	l - l t	1	1	1	1	1	1	3	3	6 T	$ T_6$	Gd
9	l III	- <u>t</u> t	1 - <u>†</u>	1	1	1	1	5/2	5	15/2	⁶ <i>H</i> _{15/2}	Tb
10		- <u>t</u> t	- <u>t</u> t	1	1	Ţ	1	2	6	8	$5I_{8}$ $4I_{15/1}$	Dy
11		-tt	-tt	-t	T.	Ţ	Ţ	3/2	6	$15/2 \qquad J = L + S$	$I_{15/1}$	Ho
12		1	ΗŢ.	- tI	ΗŢ.			$ 1 _{1/2}$	5 3	6	$^{3}H_{6}$	Er
13		- † ∏	+T	+T	- ↓T ↓∱	- ↓† ↓†		1/2		7/2 _	$^{2}F_{7/2}$	Tm
14	+I	+I	+1	+1	+1	+	+	0	0	0	$^{1}S_{0}$	Yb

Figure by MIT OpenCourseWare.

©1999 E.A. Fitzgerald

11

Temperature Dependence of Paramagnetism

• Temperature dependence determined by thermal energy vs. magnetic alignment energy (same derivation as for molecular polarizability in the case of electric dipoles)

$$f = e^{\frac{-U}{k_b T}} = e^{\frac{pE\cos\theta}{k_b T}} \text{ for electric dipoles; } f = e^{\frac{-U}{k_b T}} = e^{\frac{\mu H\cos\theta}{k_b T}} \text{ for magnetic dipoles;}$$
$$\overline{\mu}_Z = \frac{\int \mu_Z f d\Omega}{\int f d\Omega} \text{ For low H fields and/or low T,}$$
$$\overline{\mu}_Z = \frac{\mu^2 H}{3k_b T} = \frac{\mu_B^2 J^2 H}{3k_b T}$$
$$M = \frac{N}{V} \frac{\mu_B^2 J^2 H}{3k_b T}$$
$$\chi = \frac{N}{V} \frac{\mu_B^2 J^2}{3k_b T}$$
$$\chi = \frac{N}{V} \frac{\mu_B^2 J^2}{3k_b T}$$
Curie's Law

Effect of De-localized electrons on Magnetic Properties

• Pauli Paramagnetism

- dues to the reaction of free e- to magnetic field

$$\underbrace{E(H=0)} \Delta E = g_0 \mu_B H \qquad \mu = -g_0 \mu_B S$$

 $M = -\mu_B (n_+ - n_-)$ (n⁺ is the density of free electrons parallel to the H field)

$$g_{+}(E) = \frac{1}{2}g(E)$$

$$g_{-}(E) = \frac{1}{2}g(E)$$

$$E(H=0)$$

$$g_{-}(E) = \frac{1}{2}g(E) = \frac{1}{2}g(E - \mu_{B}H)$$

For exact solution, need to expand about E_f for n+ and n-

Only e- near Fermi surface matter:

$$\Delta E = g_0 \mu_B H$$

$$(n_+ - n_-) = \Delta n \approx g(E_F) \frac{\Delta E}{2}$$

$$\Delta n \approx g(E_F) \mu_B H$$

$$M = \mu_B^2 H g(E_F), \quad \chi = \mu_B^2 g(E_F)$$

Note: Pauli paramagnetism has no T dependence, whereas Curie paramagnetism has 1/T dependence 13

©1999 E.A. Fitzgerald

Effect of De-localized electrons on Magnetic Properties

- Landau paramagnetism
 - Effect of bands/Fermi surface on Pauli paramagnetism
 - F=qvxB for orbits
 - orbit not completed under normal circumstances
 - however, average effect is not zero

$$\chi_{Land} = -\frac{1}{3} \chi_{Pauli}$$

Ferromagnetism

- Most important but not common among elements
- Net magnetization exists without an applied magnetic field
- To get χ~10⁴-10⁵ as we see in ferromagnetism, most moments in material must be aligned!
- There must be a missing driving force

NOT dipole-dipole interaction: too small $E_{dipole} = \frac{1}{r^3} \left[\vec{\mu}_1 \cdot \vec{\mu}_2 - 3(\vec{\mu}_1 \cdot \hat{r})(\vec{\mu}_2 \cdot \hat{r}) \right] \sim 10^{-4} eV$

Spin Hamiltonian and Exchange

$$H^{spin} = -\sum J_{ij}S_iS_j$$
 $J_{ij} \equiv \text{exchange constant}$

Assuming spin is dominating magnetization,

$$H = -\frac{1}{2} \sum_{\vec{R},\vec{R}'} \vec{S}\left(\vec{R}\right) \cdot \vec{S}\left(\vec{R}'\right) J\left(\vec{R} - \vec{R}'\right) - g\mu_B H \sum_{\vec{R}} S\left(\vec{R}\right)$$

Exchange

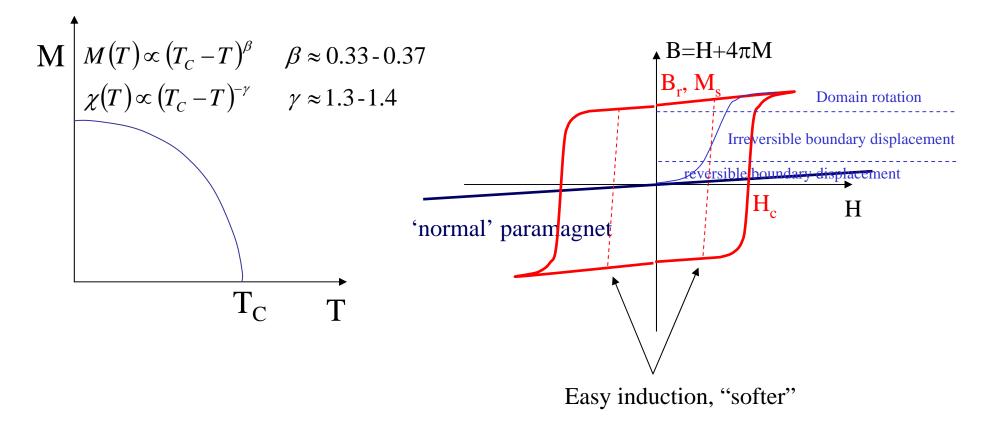
 $\begin{array}{c} \mathsf{E} \sim -\mathsf{JS}_1\mathsf{S}_2\\\\ \mathsf{J} \text{ negative, } \mathsf{E} \sim +\mathsf{S}_1\mathsf{S}_2 \text{--} > \mathsf{Energy} \quad \text{if} \quad \downarrow \uparrow\\\\ \mathsf{J} \text{ positive, } \mathsf{E} \sim -\mathsf{S}_1\mathsf{S}_2 \text{--} > \mathsf{Energy} \quad \downarrow \text{ if} \quad \uparrow \uparrow\\\\ \mathsf{Fe, Ni, Co} \text{ ---} > \mathsf{J} \text{ positive!}\\\\ \text{ Other elements J is negative}\end{array}$

Rule of Thumb:

 $\frac{r}{2r_a} = \frac{\text{interatomic distance}}{2(\text{atomic radius})} > 1.5$

J is a function of distance!

Ferromagnetism



Magentic anisotropy

hardness of loop dependent on crystal direction comes from spin interacting with bonding

Domains in Ferromagnetic Materials

