Determining n and μ : The Hall Effect

$$
F_{y}=-e v_{D} B_{z} \quad E_{Y}=v_{D} B_{Z}=E_{H}, \text { the Hall Field }
$$

$$
F_{y}=-e E_{y}
$$

Since $v_{D}=-J_{x} / e n$,

$$
E_{H}=-\frac{1}{n e} J_{x} B_{Z}=R_{H} J_{X} B_{Z}
$$

$$
R_{H}=-\frac{1}{n e} \quad \sigma=n e \mu
$$

Experimental Hall Results on Metals

- Valence=1 metals look like free-electron Drude metals
- Valence=2 and 3, magnitude and sign suggest problems

Metal	Valence	$-1 / \mathrm{R}_{\mathrm{H}}$ nec
Li	1	0.8
Na	1	1.2
K	1	1.1
Rb	1	1.0
Cs	1	0.9
Cu	1	1.5
Ag	1	1.3
Au	1	1.5
Be	2	0.2
Mg	2	-0.4
In	3	-0.3
Al	3	0.3

Hall coefficients of selected elements in moderate to high fields*

* These are roughly the limiting values assumed by R_{n} as the field becomes very large (of order $10^{4} G$), and the temperature very low, in carefully prepared specimens. The data are quoted in the form $n_{0}: n$. Where n_{0} is the density for which the Drude form (1.21) agrees with the measured $R_{u}: n_{0}=-1 / R_{H}$ ec. Evidently the alkali metals obey the Drude result reasonably well, the noble metals ($\mathrm{Cu} . \mathrm{Ag}, \mathrm{Au}$) less well, and the remaining entries, not at all.

Table by MIT OpenCourseWare.

Response of free e- to AC Electric

 Fields- Microscopic picture

$$
\frac{d p(t)}{d t}=-\frac{p(t)}{\tau}-e E_{0} e^{-i \omega t}
$$

$$
\operatorname{try} \quad p(t)=p_{0} e^{-i \omega t}
$$

$$
\begin{gathered}
-i \omega p_{0}=-\frac{p_{0}}{\tau}-e E_{0} \\
p_{0}=\frac{-e E_{0}}{\frac{1}{\tau}-i \omega}
\end{gathered}
$$

$\omega \gg 1 / \tau$, p out of phase with E

$$
p_{0}=\frac{e E_{0}}{i \omega} \quad \omega \rightarrow \infty, p \rightarrow 0
$$

$$
\omega \ll 1 / \tau, \mathrm{p} \text { in phase with } \mathrm{E}
$$

$$
p_{0}=-e E_{0} \tau
$$

What if $\omega \tau \gg 1$?

When will $\mathrm{J}=\sigma \mathrm{E}$ break down? It depends on electrons undergoing many collisions, on the average a collision time τ apart. As long as there are many collisions per cycle of the AC field ($\omega \tau \ll 1$), the AC σ will be \approx the $\mathrm{DC} \sigma$.

But consider the other limit: $\omega \tau \gg 1$.
Now there will be many cycles of the field between collisions. In this limit, the electrons will behave more like electrons in vacuum, and the relation between J and E will be different x x

Complex Representation of Waves

$\sin (k x-\omega t), \cos (k x-\omega t)$, and $\mathrm{e}^{-\mathrm{i}(k x-\omega t)}$ are all waves
$e^{-i(k x-\omega t)}$ is the complex one and is the most general

Response of e- to AC Electric Fields

- Momentum represented in the complex plane

Instead of a complex momentum, we can go back to macroscopic and create a complex J and σ

$$
\begin{gathered}
J(t)=J_{0} e^{-i \omega \tau} \quad J_{0}=-n e v=\frac{-n e p_{0}}{m}=\frac{n e^{2}}{m\left(\frac{1}{\tau}-i \omega\right)} E_{0} \\
\sigma=\frac{\sigma_{0}}{1-i \omega \tau}, \sigma_{0}=\frac{n e^{2} \tau}{m}
\end{gathered}
$$

Response of e- to AC Electric Fields

- Low frequency ($\omega \ll 1 / \tau$)
- electron has many collisions before direction change
- Ohm's Law: J follows E, σ real

- High frequency ($\omega \gg 1 / \tau$)
- electron has nearly 1 collision or less when direction is changed
- J imaginary and 90 degrees out of phase
 with E, σ is imaginary

Qualitatively:
$\omega \tau \ll 1$, electrons in phase, re-irradiate, $\mathrm{E}_{\mathrm{i}}=\mathrm{E}_{\mathrm{r}}+\mathrm{E}_{\mathrm{t}}$, reflection
$\omega \tau \gg 1$, electrons out of phase, electrons too slow, less interaction,transmission $\varepsilon=\varepsilon_{\mathrm{r}} \varepsilon_{0} \varepsilon_{\mathrm{r}}=1$

$$
\tau \approx 10^{-14} \mathrm{sec}, \nu \lambda=c, v=\frac{3 \times 10^{10} \mathrm{~cm} / \mathrm{sec}}{5000 \times 10^{-8} \mathrm{~cm}} \approx 10^{14} \mathrm{~Hz}
$$

E-fields with frequencies greater than visible light frequency expected to be beyond influence of free electrons

Response of light to interaction with material

- Need Maxwell's equations
- from experiments: Gauss, Faraday, Ampere's laws
- second term in Ampere's is from the unification
- electromagnetic waves!

$$
\begin{aligned}
& \text { SI Units (MKS) } \\
& \nabla \bullet \vec{D}=\rho \\
& \nabla \bullet \vec{B}=0 \\
& \nabla x \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
& \nabla x \vec{H}=\vec{J}+\frac{\partial \vec{D}}{\partial t} \\
& \vec{D}=\varepsilon_{0} \vec{E}+\vec{P}=\varepsilon \vec{E} \\
& \vec{B}=\mu_{0} \vec{H}+\mu_{0} \vec{M}=\mu \vec{H} \\
& \mu=\mu_{r} \mu_{0} ; \varepsilon=\varepsilon_{r} \varepsilon_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Gaussian Units (CGS) } \\
& \begin{array}{l}
\nabla \bullet \vec{D}=4 \pi \rho \\
\nabla \bullet \vec{B}=0 \\
\nabla x \vec{E}=-\frac{1}{c} \frac{\partial \vec{B}}{\partial t} \\
\nabla \times \vec{H}=\frac{4 \pi}{c} \vec{J}+\frac{1}{c} \frac{\partial \vec{D}}{\partial t} \\
\vec{D}=\vec{E}+4 \pi \vec{P} \\
\vec{B}=\vec{H}+4 \pi \vec{M}
\end{array}
\end{aligned}
$$

Waves in Materials

- Non-magnetic material, $\mu=\mu_{0}$
- Polarization non-existent or swamped by free electrons, $\mathrm{P}=0$

$$
\begin{aligned}
& \nabla x \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
& \nabla x \vec{B}=\mu_{0} \vec{J}+\mu_{0} \varepsilon_{0} \frac{\partial \vec{E}}{\partial t} \\
& \nabla x(\nabla x \vec{E})=-\frac{\partial \nabla x \vec{B}}{\partial t} \\
& -\nabla^{2} E=-\frac{\partial}{\partial t}\left[\mu_{0} J+\mu_{0} \varepsilon_{0} \frac{\partial E}{\partial t}\right] \\
& \nabla^{2} E=\mu_{0} \sigma \frac{\partial E}{\partial t}+\mu_{0} \varepsilon_{0} \frac{\partial^{2} E}{\partial t^{2}} \\
& \text { For a typical wave, } \\
& E=E_{0} e^{i(k \bullet r-\sigma t)}=E_{0} e^{i k \bullet r} e^{-i \omega t}=E(r) e^{-i \omega t} \\
& \nabla^{2} E(r)=-i \varpi \mu_{0} \sigma E(r)-\mu_{0} \varepsilon_{0} \omega^{2} E(r) \\
& \begin{array}{l}
\nabla^{2} E(r)=-\frac{\omega^{2}}{c^{2}} \varepsilon(\omega) E(r) \text { Wave Equation } \\
\varepsilon(\omega)=1+\frac{i \sigma}{\varepsilon_{0} \omega}
\end{array} \\
& E(r)=E_{0} e^{i k \bullet r} \\
& k^{2}=\frac{\omega^{2}}{c^{2}} \varepsilon(\omega) \\
& v=\frac{\omega}{k}=\frac{c}{\sqrt{\varepsilon(\omega)}}
\end{aligned}
$$

Waves in Materials

- Waves slow down in materials (depends on $\varepsilon(\omega)$)
- Wavelength decreases (depends on $\varepsilon(\omega)$)
- Frequency dependence in $\varepsilon(\omega)$

$$
\begin{gathered}
\varepsilon(\omega)=1+\frac{i \sigma}{\varepsilon_{0} \omega}=1+\frac{i \sigma_{0}}{\varepsilon_{0} \omega(1-i \omega \tau)} \\
\varepsilon(\omega)=1+\frac{i \omega_{p}^{2} \tau}{\omega-i \omega^{2} \tau} \\
\omega_{p}^{2}=\frac{n e^{2}}{\varepsilon_{0} m} \text { Plasma Frequency } \\
\text { For } \omega \tau \ggg 1, \varepsilon(\omega) \text { goes to } 1
\end{gathered}
$$

$\underline{\text { For an excellent conductor (} \sigma_{\underline{0}} \text { large), ignore } 1, \text { look at case for } \omega \tau \ll 1}$

$$
\varepsilon(\omega) \approx \frac{i \omega_{p}^{2} \tau}{\omega-i \omega^{2} \tau} \approx \frac{i \omega_{p}^{2} \tau}{\omega}
$$

Waves in Materials

$$
\begin{aligned}
& k=\frac{\omega}{c} \sqrt{\varepsilon(\omega)}=\frac{\omega}{c} \sqrt{i} \sqrt{\frac{\sigma_{0}}{\omega \varepsilon_{0}}} \\
& k=\frac{\omega}{c}\left(\frac{1+i}{\sqrt{2}}\right) \sqrt{\frac{\sigma_{0}}{\omega \varepsilon_{0}}}=\left(\sqrt{\frac{\sigma_{0} \omega}{2 \varepsilon_{0} c^{2}}}+i \sqrt{\frac{\sigma_{0} \omega}{2 \varepsilon_{0} c^{2}}}\right)
\end{aligned}
$$

For a wave $E=E_{0} e^{i(k z-\omega t)} \quad$ Let $\mathrm{k}=\mathrm{k}_{\text {real }}+\mathrm{k}_{\text {imaginary }}=\mathrm{k}_{\mathrm{r}}+\mathrm{i}_{\mathrm{i}}$

$$
E=E_{0} e^{i\left[k_{r} z-\omega t\right]} e^{-\left|k_{i}\right| z}
$$

The skin depth can be defined by

Waves in Materials

For a material with any σ_{0}, look at case for $\omega \tau \gg 1$

$$
\begin{array}{ll}
\varepsilon(\omega)=1-\frac{\omega_{p}^{2}}{\omega^{2}} & \omega<\omega_{\mathrm{p}}, \varepsilon \text { is negative, } \mathrm{k}=\mathrm{k}_{\mathrm{i}}, \text { wave reflected } \\
\omega>\omega_{\mathrm{p}}, \varepsilon \text { is positive, } \mathrm{k}=\mathrm{k}_{\mathrm{r}}, \text { wave propagates }
\end{array}
$$

Success and Failure of Free e- Picture

- Success
- Metal conductivity
- Hall effect valence=1
- Skin Depth
- Wiedmann-Franz law
- Examples of Failure
- Insulators, Semiconductors
- Hall effect valence>1
- Thermoelectric effect

$$
\sigma=\frac{n e^{2} \tau}{m}
$$

- Colors of metals

Therefore :	$\frac{\mathrm{K}}{\sigma}=\frac{3}{2}\left(\frac{k_{b}}{e}\right)^{2} T$
Luck: $\mathrm{c}_{\text {vreal }}=\mathrm{c}_{\text {velass }} / 100$; $\mathrm{v}_{\text {real }}{ }^{2}=\mathrm{v}_{\text {class }} 2 * 100$	$\sim \mathrm{C}$!

Wiedmann-Franz ‘Success’

273K			373K	
Element	$\begin{gathered} k \\ \text { (watt cm-K) } \end{gathered}$	$\begin{gathered} k \sigma T \\ \text { (watt-ohm K }{ }^{2} \text {) } \end{gathered}$	$\begin{gathered} k \\ \text { (watt cm-K) } \end{gathered}$	$\begin{gathered} k \sigma T \\ \text { (watt-ohm K }{ }^{2} \text {) } \end{gathered}$
Li	0.71	2.22×10^{8}	0.73	2.43×10^{8}
Na	1.38	2.12		
K	1.0	2.23		
Rb	0.6	2.42		
Cu	3.85	2.20	3.82	2.29
Ag	4.18	2.31	4.17	2.38
Au	3.1	2.32	3.1	2.36
Be	2.3	2.36	1.7	2.42
Mg	1.5	2.14	1.5	2.25
Nb	0.52	2.90	0.54	2.78
Fe	0.80	2.61	0.73	2.88
Zn	1.13	2.28	1.1	2.30
Cd	1.0	2.49	1.0	
Al	2.38	2.14	2.30	2.19
In	0.88	2.58	0.80	2.60
Tl	0.5	2.75	0.45	2.75
Sn	0.64	2.48	0.60	2.54
Pb	0.38	2.64	0.35	2.53
Bi	0.09	3.53	0.08	3.35
Sb	0.18	2.57	0.17	2.69

Experimental thermal conductivities and Lorenz numbers of selected metals

Thermoelectric Effect

Exposed Failure when
c_{v} and v^{2} are not both
in property

$$
E=Q \nabla T
$$

Thermopower Q is $Q=-\frac{c_{v}}{3 n e}=\frac{-\frac{3}{2} n k_{b}}{3 n e}=-\frac{n k_{b}}{2 e}$

Table by MIT OpenCourseWare.
Thermopower is about 100 times too large!

