

Experimental Hall Results on Metals

- Valence=1 metals look like free-electron Drude metals
- Valence=2 and 3, magnitude and sign suggest problems

Metal	Valence	-1/R _H nec	
Li	1	0.8	
Na	1	1.2	
K	1	1.1	
Rb	1	1.0	
Cs	1	0.9	
Cu	1	1.5	
Ag	1	1.3	
Au	1	1.5	
Be	2	0.2	
Mg	2	-0.4	
In	3	-0.3	
Al	3	0.3	

Hall coefficients of selected elements in moderate to high fields*

* These are roughly the limiting values assumed by R_n as the field becomes very large (of order 10⁴ G), and the temperature very low, in carefully prepared specimens. The data are quoted in the form n_0 :n. Where n_0 is the density for which the Drude form (1.21) agrees with the measured R_u : $n_0 = -1/R_H$ ec. Evidently the alkali metals obey the Drude result reasonably well, the noble metals (Cu. Ag, Au) less well, and the remaining entries, not at all.

Table by MIT OpenCourseWare.

Response of free e- to AC Electric Fields

○ | e-

• Microscopic picture

$$E_Z = E_O e^{-i\omega t}$$

B=0 in conductor,

and $\vec{F}(\vec{E}) >> \vec{F}(\vec{B})$

$$\frac{dp(t)}{dt} = -\frac{p(t)}{\tau} - eE_0 e^{-i\omega t}$$

try
$$p(t) = p_0 e^{-i\omega t}$$

$$-i\omega p_0 = -\frac{p_0}{\tau} - eE_0$$

$$p_0 = \frac{-eE_0}{\frac{1}{\tau} - i\omega}$$

ω >> 1/τ, p out of phase with E $p_0 = \frac{eE_0}{iω}$ ω → ∞, p → 0 ω << 1/τ, p in phase with E $p_0 = -eE_0τ$

What if $\omega \tau >> 1?$

<u>When will J = σE break down</u>? It depends on electrons undergoing many collisions, on the average a collision time τ apart. As long as there are <u>many</u> collisions per cycle of the AC field ($\omega \tau <<1$), the AC σ will be \approx the DC σ .

Now there will be <u>many cycles</u> of the field between collisions. In this limit, the electrons will behave more like electrons in vacuum, and the relation between J and E will be different x x

Complex Representation of Waves

 $sin(kx-\omega t)$, $cos(kx-\omega t)$, and $e^{-i(kx-\omega t)}$ are all waves

 $e^{-i(kx-\omega t)}$ is the complex one and is the most general

Response of e- to AC Electric Fields

• Momentum represented in the complex plane

Instead of a complex momentum, we can go back to macroscopic and create a complex J and σ

$$J(t) = J_0 e^{-i\omega\tau} \qquad J_0 = -nev = \frac{-nep_0}{m} = \frac{ne^2}{m(\frac{1}{\tau} - i\omega)} E_0$$
$$\sigma = \frac{\sigma_0}{1 - i\omega\tau}, \sigma_0 = \frac{ne^2\tau}{m}$$

Response of e- to AC Electric Fields

- Low frequency ($\omega <<1/\tau$)
 - electron has many collisions before direction change
 - Ohm's Law: J follows E, σ real
- High frequency ($\omega >> 1/\tau$)
 - electron has nearly 1 collision or less when direction is changed
 - J imaginary and 90 degrees out of phase with E, σ is imaginary

Qualitatively:

 $\omega \tau <<1$, electrons in phase, re-irradiate, $E_i = E_r + E_t$, *reflection* $\omega \tau >>1$, electrons out of phase, electrons too slow, less interaction, *transmission* $\varepsilon = \varepsilon_r \varepsilon_0 \varepsilon_r = 1$

$$\tau \approx 10^{-14} \sec, \nu \lambda = c, \nu = \frac{3x10^{10} cm / \sec}{5000x10^{-8} cm} \approx 10^{14} Hz$$

E-fields with frequencies greater than visible light frequency expected to be beyond influence of free electrons

Response of light to interaction with material

- Need Maxwell's equations
 - from experiments: Gauss, Faraday, Ampere's laws
 - second term in Ampere's is from the unification
 - electromagnetic waves!

SI Units (MKS)Gaussian Units (CGS) $\nabla \cdot \vec{D} = \rho$ $\nabla \cdot \vec{D} = 4\pi\rho$ $\nabla \cdot \vec{B} = 0$ $\nabla \cdot \vec{B} = 0$ $\nabla x \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ $\nabla x \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$ $\nabla x \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$ $\nabla x \vec{H} = \frac{4\pi}{c} \vec{J} + \frac{1}{c} \frac{\partial \vec{D}}{\partial t}$ $\vec{D} = \varepsilon_0 \vec{E} + \vec{P} = \varepsilon \vec{E}$ $\vec{B} = \mu_0 \vec{H} + \mu_0 \vec{M} = \mu \vec{H}$ $\mu = \mu_r \mu_0; \varepsilon = \varepsilon_r \varepsilon_0$ \vec{G}

- Non-magnetic material, $\mu = \mu_0$
- Polarization non-existent or swamped by free electrons, P=0

$$\nabla x \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
For a typical wave,

$$\nabla x \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$$

$$\nabla x (\nabla x \vec{E}) = -\frac{\partial \nabla x \vec{B}}{\partial t}$$

$$-\nabla^2 E = -\frac{\partial}{\partial t} [\mu_0 J + \mu_0 \varepsilon_0 \frac{\partial E}{\partial t}]$$

$$\nabla^2 E = \mu_0 \sigma \frac{\partial E}{\partial t} + \mu_0 \varepsilon_0 \frac{\partial^2 E}{\partial t^2}$$
For a typical wave,

$$E = E_0 e^{i(k \cdot r - \sigma \pi)} = E_0 e^{ik \cdot r} e^{-i\sigma \pi} = E(r) e^{-i\sigma \pi}$$

$$\nabla^2 E(r) = -i\sigma \mu_0 \sigma E(r) - \mu_0 \varepsilon_0 \sigma^2 E(r)$$
Wave Equation

$$\varepsilon(\omega) = 1 + \frac{i\sigma}{\varepsilon_0 \omega}$$

$$E(r) = E_0 e^{ik \cdot r}$$

$$k^2 = \frac{\omega^2}{c^2} \varepsilon(\omega)$$

$$v = \frac{\omega}{k} = \frac{c}{\sqrt{\varepsilon(\omega)}}$$

- Waves slow down in materials (depends on $\varepsilon(\omega)$)
- Wavelength decreases (depends on $\varepsilon(\omega)$)
- Frequency dependence in $\varepsilon(\omega)$

$$\varepsilon(\omega) = 1 + \frac{i\sigma}{\varepsilon_0 \omega} = 1 + \frac{i\sigma_0}{\varepsilon_0 \omega(1 - i\omega\tau)}$$
$$\varepsilon(\omega) = 1 + \frac{i\omega_p^2 \tau}{\omega - i\omega^2 \tau}$$
$$\omega_p^2 = \frac{ne^2}{\varepsilon_0 m}$$
Plasma Frequency

For $\omega \tau >>>1$, $\varepsilon(\omega)$ goes to 1

For an excellent conductor (σ_0 large), ignore 1, look at case for $\omega \tau \ll 1$

$$\varepsilon(\omega) \approx \frac{i\omega_p^2 \tau}{\omega - i\omega^2 \tau} \approx \frac{i\omega_p^2 \tau}{\omega}$$

$$k = \frac{\omega}{c} \sqrt{\varepsilon(\omega)} = \frac{\omega}{c} \sqrt{i} \sqrt{\frac{\sigma_0}{\omega \varepsilon_0}}$$
$$k = \frac{\omega}{c} \left(\frac{1+i}{\sqrt{2}}\right) \sqrt{\frac{\sigma_0}{\omega \varepsilon_0}} = \left(\sqrt{\frac{\sigma_0 \omega}{2\varepsilon_0 c^2}} + i \sqrt{\frac{\sigma_0 \omega}{2\varepsilon_0 c^2}}\right)$$

For a wave $E = E_0 e^{i(kz - \omega t)}$ Let $k = k_{real} + k_{imaginary} = k_r + ik_i$

For a material with any σ_0 , look at case for $\omega \tau >> 1$

$$\varepsilon(\omega) = 1 - \frac{\omega_p^2}{\omega^2}$$

 $\omega < \omega_p$, ε is negative, k=k_i, wave reflected

 $\omega > \omega_p$, ε is positive, k=k_r, wave propagates

Success and Failure of Free e- Picture

- Success
 - Metal conductivity
 - Hall effect valence=1
 - Skin Depth
 - Wiedmann-Franz law
- Examples of Failure
 - Insulators, Semiconductors
 - Hall effect valence>1
 - Thermoelectric effect
 - Colors of metals

K/σ=thermal conduct./electrical conduct.~CT

 $\mathbf{K} = \frac{1}{2}c_v v_{therm}^2 \tau$ $c_{v} = \left(\frac{\partial E}{\partial T}\right)_{u} = \frac{3}{2}nk_{b}; v_{therm}^{2} = \frac{3k_{b}T}{m}$ $\mathbf{K} = \frac{1}{3} \left(\frac{3}{2} n k_b \right) \left(\frac{3 k_b T}{m} \right) \tau = \frac{3}{2} \frac{n k_b^2 T \tau}{m}$ $\sigma = \frac{ne^2\tau}{1}$ Therefore : $\frac{K}{\sigma} = \frac{3}{2} \left(\frac{k_b}{e}\right)^2 T$ ~C! Luck: $c_{vreal} = c_{vclass}/100;$ $v_{real}^2 = v_{class}^2 \times 100$

Wiedmann-Franz 'Success'

273К		373K		
Element	k (watt cm-K)	$k \sigma T$ (watt-ohm K ²)	k (watt cm-K)	$k \sigma T$ (watt-ohm K ²)
Li	0.71	2.22 x 10 ⁸	0.73	2.43 x 10 ⁸
Na	1.38	2.12		
К	1.0	2.23		
Rb	0.6	2.42		
Cu	3.85	2.20	3.82	2.29
Ag	4.18	2.31	4.17	2.38
Au	3.1	2.32	3.1	2.36
Be	2.3	2.36	1.7	2.42
Mg	1.5	2.14	1.5	2.25
Nb	0.52	2.90	0.54	2.78
Fe	0.80	2.61	0.73	2.88
Zn	1.13	2.28	1.1	2.30
Cd	1.0	2.49	1.0	
Al	2.38	2.14	2.30	2.19
In	0.88	2.58	0.80	2.60
T1	0.5	2.75	0.45	2.75
Sn	0.64	2.48	0.60	2.54
Pb	0.38	2.64	0.35	2.53
Bi	0.09	3.53	0.08	3.35
Sb	0.18	2.57	0.17	2.69

Table by MIT OpenCourseWare.

Thermopower is about 100 times too large!

Thermoelectric Effect

Exposed Failure when c_v and v^2 are not both in property

$$E = Q\nabla T$$

Thermopower Q is $Q = -\frac{c_v}{3ne} = \frac{-\frac{3}{2}nk_b}{3ne} = -\frac{nk_b}{2e}$