MIT OpenCourseWare
http://ocw.mit.edu

3.23 Electrical, Optical, and Magnetic Properties of Materials

Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Quantum Mechanics - exercice sheet 1

Nicolas Poilvert

September 12, 2007

1

In a monoatomic gas, one measure of the "average speed" of a gas particle is the root mean square speed defined as follow: $v_{\mathrm{rms}}=\left\langle v^{2}\right\rangle^{1 / 2}=\sqrt{\frac{3 k_{B} T}{m}}$, where k_{B} is the Boltzmann constant, T the temperature, and m the mass of a particle. Using this formula, calculate the De Broglie wavelength for Helium (He) and Argon (Ar) atoms at 100 K and 500 K .

Datas:
Helium molar mass, $4.033 \mathrm{~g} /$ mole
Argon molar mass, $39.95 \mathrm{~g} / \mathrm{mole}$

2

Electrons have been used to determine molecular and solid structures using diffraction. Calculate the speed of an electron for which the De Broglie wavelength is equal to a typical bond length, namely, 0.150 nm .

Datas:
electron mass, $9.109 * 10^{-31} \mathrm{~kg}$

3

Why can we conclude that the wave function $\psi(x, t)=\phi(x) e^{-\frac{i E t}{\hbar}}$ represents a standing wave?

4

If $\psi(x, t)=A \sin (k x-\omega t)$ describes a wave travelling in the +x direction, how would you describe a wave travelling in the -x direction?

5

Distinguish between the following terms applied to the following set of functions, $\psi_{1}(x), \psi_{2}(x), \ldots, \psi_{n}(x)$: orthogonal, normalized and complete. Give a mathematical expression to express those terms using integrals.

6

Determine in each of the following cases if the function in the first column of table 1 is an eigenfunction of the opertor in the second column. If so, what is the corresponding eigenvalue?

wavefunctions	operators
$\sin (\phi) \cos (\phi)$	$\frac{\partial}{\partial \phi}$
$e^{-x^{2} / 3}$	$\left(\frac{1}{x}\right) \frac{d}{d x}$
$x y$	$x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}$
$3 \cos (\theta)^{2}-1$	$\frac{1}{\sin (\theta)} \frac{d}{d \theta}\left(\sin (\theta) \frac{d}{d \theta}\right)$
x^{2}	$\frac{d}{d x}$

Table 1: table of wavefunctions and operators

7

Which of the following wavefunctions are eigenfunctions of the operator $\frac{d}{d x}$? If they are eigenfunctions, what is the associated eigenvalue?

- $a e^{-3 x}+b e^{-3 i x}$
- $\sin ^{2}(x)$
- $e^{-i x}$
- $\cos (a x)$
- $e^{-i x^{2}}$

