MIT OpenCourseWare
http://ocw.mit.edu

3.23 Electrical, Optical, and Magnetic Properties of Materials

Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Quantum Mechanics - exercice sheet 1, solution

Nicolas Poilvert

September 12, 2007

1

By definition, the De Broglie formula is $\lambda=\frac{h}{p}$, where h is the Planck constant and p is the momentum's magnitude. We also know from classical mechanics that the momentum is related the the velocity by $p=m v$, where m is the mass of the particle. We can then conclude that the De Broglie wavelength is given by:

$$
\lambda=\frac{h}{\sqrt{3 m k_{B} T}}
$$

If M is the molar mass, the mass of a single atom is $m=\frac{M}{N_{A}}$, where N_{A} is the Avogadro number. We find that:

- $\lambda_{\mathrm{He}}^{100 K} \approx 1.26 \AA$ and $\lambda_{\mathrm{He}}^{500 K} \approx 0.56 \AA$
- $\lambda_{\mathrm{Ar}}^{100 K} \approx 0.40 \AA$ and $\lambda_{\mathrm{Ar}}^{500 K} \approx 0.18 \AA$

2

Using the De Broglie formula, we easily find that:

$$
\lambda=\frac{h}{m v} \Longrightarrow v=\frac{h}{m \lambda}
$$

By plugging in the values for the mass of the electron and the typical bond length for λ, we find:

$$
v \approx 4.8 * 10^{6} \mathrm{~m} \cdot \mathrm{~s}^{-1} \text { which is about } 1.6 \% \text { of the speed of light! }
$$

3

According to the probabilistic interpretation of the wavefunction in Quantum Mechanics, we know that if the wavefunction of any system is given by $\psi(\vec{r}, t)$, then the probability to find the system in a small volume $d^{3} \vec{r}$ around position \vec{r} at time t is:

$$
P(\vec{r}, t) d^{3} \vec{r}=|\psi(\vec{r}, t)|^{2} d^{3} \vec{r}
$$

Now if the expression for the wavefunction is $\psi(\vec{r}, t)=\phi(x) e^{-\frac{i E t}{\hbar}}$ (here we deal with a one dimensional system in which \vec{r} is replaced by x), then we see that $P(\vec{r}, t)$ is given by $|\phi(x)|^{2}$, because $\left|e^{-\frac{i E t}{\hbar}}\right|^{2}=1$. From this result we can then conclude that $P(\vec{r}, t)$ does not depend on the time t . This is why we say that wavefunctions like $\psi(x, t)=\phi(x) e^{-\frac{i E t}{\hbar}}$ represents "standing waves". In the litterature, you will also see "stationnary states" to describe "standing waves".

4

In order to describe a (sinusoidal) wave travelling in the -x direction, we use the following mathematical expression:

$$
\psi(x, t)=A \sin (k x+\omega t)
$$

A wave represents a "perturbation" in space and time. In order to convince ourselves that this "perturbation" is indeed travelling in the -x direction, we will "follow" a plane of constant perturbation, i.e we will set $\psi(x, t)$ to a given value ψ_{0}. Given the mathematical expression for $\psi(x, t)$, we see that setting $\psi(x, t)$ to a constant is equivalent to setting the phase of the wave $(k x+\omega t)$ to a given constant. Now if $k x+\omega t=c_{0}=$ constant for all x and t , then we can write:

$$
x=\frac{-\omega t+c_{0}}{k}
$$

which shows us that x is decreasing with time. Hence the wave travells "to the left", i.e in the -x direction.

5

Let's consider the set of wavefunctions $\psi_{1}(x), \psi_{2}(x), \ldots, \psi_{n}(x)$. One says that the wavefunctions in the set are orthogonal to each other when for any indices i and j in $1,2,3, \ldots, n$, we have the following result:

$$
\int \psi_{i}^{*}(x) \psi_{j}(x) d x=\delta_{i j}
$$

where $\delta_{i j}$ is one only if $i=j$ and zero otherwise.
A wavefunction $\psi(x)$ is normalized if we have:

$$
\int \psi^{*}(x) \psi(x) d x=\int|\psi(x)|^{2} d x=1
$$

We say that a set of wavefunctions $\psi_{1}(x), \psi_{2}(x), \ldots, \psi_{n}(x)$ is complete, when any wavefunction $\psi(x)$ can be expanded as a linear combinaison of the basis functions in the set. Mathematically, we can write any wavefunction as a sum:

$$
\psi(x)=\sum_{j=1}^{n} c_{j} \psi_{j}(x)
$$

where the $\psi_{j}(x)$ are the wavefunctions belonging to the complete set and the c_{j} 's are complex numbers.

6

If we derive $\sin (\phi) \cos (\phi)$ with respect to ϕ, we find $\cos ^{2}(\phi)-\sin ^{2}(\phi)=\cos (2 \phi)$ which is not equal to a constant time $\sin (\phi) \cos (\phi)$, so $\sin (\phi) \cos (\phi)$ is not an eigenfunction of the operator $\frac{\partial}{\partial \phi}$.

We have $\frac{1}{x} \frac{d}{d x}\left(e^{-x^{2} / 3}\right)=\frac{1}{x}\left(-\frac{2 x}{3}\right) e^{-x^{2} / 3}=\left(-\frac{2}{3}\right) e^{-x^{2} / 3}$. We then see that $\frac{1}{x} \frac{d}{d x}$ applied to the wavefunction $e^{-x^{2} / 3}$ gives us $-\frac{2}{3}$ times the same wavefunction. We can then conclude that $e^{-x^{2} / 3}$ is an eigenfunction of $\frac{1}{x} \frac{d}{d x}$ for the eigenvalue $-\frac{2}{3}$.

Again we have $\left[x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right] x y=x \frac{\partial(x y)}{\partial x}+y \frac{\partial(x y)}{\partial y}=x y+y x=2 x y$. We conclude that $x y$ is an eigenfunction of $x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}$ for the eigenvalue 2 .

In this case we have, $\left[\frac{1}{\sin (\theta)} \frac{d}{d \theta}\left(\sin (\theta) \frac{d}{d \theta}\right)\right]\left(3 \cos (\theta)^{2}-1\right)=\frac{1}{\sin (\theta)} \frac{d}{d \theta}\left(\sin (\theta) \frac{d\left(3 \cos (\theta)^{2}-1\right)}{d \theta}\right)=$ $\frac{1}{\sin (\theta)} \frac{d}{d \theta}(\sin (\theta)(-6 \sin (\theta) \cos (\theta)))=\frac{-6}{\sin (\theta)} \frac{d}{d \theta}\left(\cos (\theta) \sin (\theta)^{2}\right)=\frac{-6}{\sin (\theta)}\left(-\sin (\theta)^{3}+\right.$ $\left.2 \cos (\theta)^{2} \sin (\theta)\right)=-6\left(3 \cos (\theta)^{2}-1\right)$. Hence $3 \cos (\theta)^{2}-1$ is an eigenfunction of $\frac{1}{\sin (\theta)} \frac{d}{d \theta}\left(\sin (\theta) \frac{d}{d \theta}\right)$ for the eigenvalue -6 .

The last one is easy. Indeed $\frac{d}{d x}\left(x^{2}\right)=2 x$ which is not a number times x^{2}, so x^{2} is not an eigenfunction of $\frac{d}{d x}$.

7

- $a e^{-3 x}+b e^{-3 i x}$ is not an eigenfunction of $\frac{d}{d x}$ because $\frac{d}{d x}\left(a e^{-3 x}+b e^{-3 i x}\right)=$ $-3\left(a e^{-3 x}+i b e^{-3 i x}\right) \neq$ constant $*\left(a e^{-3 x}+b e^{-3 i x}\right)$
- it is quite obvious to see that $\sin ^{2}(x)$ is not an eigenfunction of $\frac{d}{d x}$.
- $e^{-i x}$ is clearly an eigenfunction of $\frac{d}{d x}$ for the eigenvalue $-i$
- $\cos (a x)$ is not an eigenvalue of $\frac{d}{d x}$ because $\frac{d}{d x}(\cos (a x))=-a \sin (a x) \neq$ constant $* \cos (a x)$
- At last, we see that $\frac{d}{d x}\left(e^{-i x^{2}}\right)=-2 i x e^{-i x^{2}} \neq$ constant $* e^{-i x^{2}}$, so $e^{-i x^{2}}$ is not an eigenfunction of $\frac{d}{d x}$.

