Organic chemistry meets electronics

engineer multiple functionalities in carbon nanotubes with ligands attached to the sidewalls

Covalent Functionalization

- Robust attachment of sidewalls ligands
- Several groups have succeeded in covalent linking of hydrogen, fluorine, methyl, dichlorocarbene, nitrene, carboxyl
- Disrupted π-bonding detected by Raman spectroscopy

J.L.Bahr et al., J. Am. Chem. Soc., **123** 6536 (2001) M.Holzinger et al., J. Am. Chem. Soc., **125** 8566 (2003)

A. Hirsch, Angew. Chem. Int. Ed., 41, 1853 (2002)
S. Niyogi *et al*, Acc. Chem. Res., 35, 1105 (2002)
J. L. Bahr *et al*, J. Mater. Chem., 12, 1952 (2002)

Generalized Wannier Functions for Composite Bands

- $\{|\mathbf{R}n\rangle\}$ span the same space as $\{|\Psi_{n\mathbf{k}}\rangle\}$
- $|\mathbf{R}n\rangle = w_n(\mathbf{r}-\mathbf{R})$ (translational images)
- $\langle \mathbf{R}n | \mathbf{R}'m \rangle = \delta_{n,m} \, \delta_{\mathbf{R},\mathbf{R}'}$
- "maximally" localized

From Bloch Orbitals to Wannier Functions

Periodic
$$V_{\text{ext}} \Rightarrow \Psi_{n\mathbf{k}}(\mathbf{r}) = u_{n\mathbf{k}}(\mathbf{r}) e^{i\mathbf{k}\cdot\mathbf{r}}$$

$$|\mathbf{R}n\rangle = \int_{BZ} \Psi_{n\mathbf{k}}(\mathbf{r}) e^{-i\mathbf{k}\cdot\mathbf{R}} d\mathbf{k}$$

Gauge freedoms

- Arbitrary phase factor for every *n*k (Schrödinger)
- Arbitrary unitary rotations $U_{mn}^{(\mathbf{k})}$ for every **k** (DFT)

$$|\mathbf{R}n\rangle = \int_{BZ} \sum_{m} U_{mn}^{(\mathbf{k})} \Psi_{m\mathbf{k}}(\mathbf{r}) e^{-i\mathbf{k}\cdot\mathbf{R}} d\mathbf{k}$$

Silicon, GaAs, Amorphous Silicon, Benzene

Pristine Carbon Nanotubes

- $C_h = n a_1 + m a_2$
- Armchair (n,n)
- Zig-Zag (n,0)
- Chiral (n,m) n≠m

tube axis

2-Dimensional Band Structure of Graphene

Image removed for copyright reasons. See Souza, I., N. Marzari and D. Vanderbilt. "Maximally localized Wannier functions for entangled energy bands." *Physical Review B* 65 (2001).

• mod(3) rule: if (n-m) is a multiple of 3 the tube is metallic

Band Structure of (8,0) and (5,5) SWNT

Figures by MIT OCW.

Disentanglement: Conduction Bands in (5,5) SWNT

The LEGO Bricks of Electronic Structure

First-Principles Molecular Dynamics: Time Evolution of the Electronic Ground State

Optimal Unitary Transformation of the Bloch Orbitals

Minimization of the spread functional

$$\Omega = \sum_{n} [\langle r^2 \rangle_n - \langle \mathbf{r} \rangle_n^2]$$

exploiting the arbitrariness of the unitary transformations between the Bloch orbitals

$$|\mathbf{R}n\rangle = \int_{BZ} \sum_{m} U_{mn}^{(\mathbf{k})} \Psi_{m\mathbf{k}}(\mathbf{r}) e^{-i\mathbf{k}\cdot\mathbf{R}} d\mathbf{k}$$

Real Space

Maximally-Localized

Wannier Functions

The LEGO Bricks of Electronic Structure

Large Scale Calculations

Zero interaction between Wannier orbitals whose centers are further apart than decay length

Compact mapping of Bloch states into local orbitals

Band Structure of (5,5) and (8,0) SWCNTs

(5,5) SWCNT

Exponential Decay

Even in a metal, we have smoothly connected manifolds – no relation with the physical decay of the density matrix

Aryl / Hydrogen

- Band structure / Different functional groups
 - Band structure is not so much dependent on functional groups
 - Net effect of covalent functionalization can be mimicked by removing p-MLWFs ⇒ localized p orbitals

charge density injected when $-NO_2$ replaced by $-NH_2$

aminophenyl group is more electropositive than nitrophenyl group

Aryl / Hydrogen

- Large scale simulations
 - Conductor part : 1000-3000 atoms / 12-37 nm
 - Average of five random configurations

• Parameterization

• Electronic structure of long 1-D structure with a little cost

MLWFs Extraction From a Saturated Cluster

k