
## 3.35 – Fracture and Fatigue Problem Set 3 – Solutions October 21, 2003



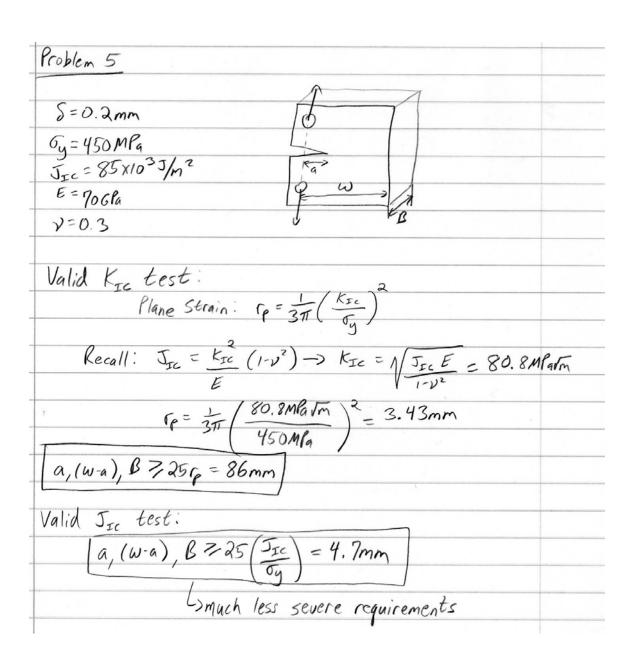


Assuming plane strain behavior:
$$r_{p} = \frac{1}{3\pi} \left( \frac{k_{\text{I}}}{\sigma_{\text{y}}} \right)^{2} = 1.5 \text{ /mm}$$

The region of J-dominance can be described as:



where R≈ + rp = 377.5 um


Also, ro Should be greater than the size of the process Zone (e.g. page 311 of the text: the grain size for transgranular cleavage or intergranular fracture, and the mean spacing of void-nucleating particles for ductile failure by void growth).

Therefore, the region of validity for the material with a grain size of 220 mm is extremely small (ro R). Also, very few grains will fit into the above described region of validity (R). Therefore, crystal plasticity (rather than continuum) may dominate.

| The region of valid | lity of material 1, with a grain      |
|---------------------|---------------------------------------|
| Size of lourn, is   | much larger and continuum assumptions |
| will hold.          | ,                                     |
|                     |                                       |
|                     |                                       |
|                     |                                       |
| 6 For elastic-plasi | tic fracture toughness testing, the   |
| depth of the initia | al crack must be at least one-half    |
|                     | specimen to ensure a large region     |
| 100                 | As discussed in class, pure tension   |
|                     | y of loading leads to a very small    |
| region of tedomin   | ance. With increasing amounts of      |
| egion of Jacomine   | L C / L ) H                           |
|                     | herefore bending), the region of      |
|                     | s in size. Computational results to   |
| support this were   | given in the notes.                   |
| 1 Le                |                                       |
|                     | -Pure Stretch Axis                    |
|                     | (P)(e) gives a measure of the         |
|                     | bending moment.                       |
|                     | 3 , 10                                |
|                     |                                       |
|                     |                                       |
| · ·                 |                                       |



| 11       | Fracture surface asperity height = 0.75 mm                                                                   |
|----------|--------------------------------------------------------------------------------------------------------------|
|          | We can assume linear elastic conditions for the ceramic                                                      |
|          | $J = \frac{K_z^2}{(1-v^2)} \rightarrow assume \ \sqrt{2} \ 0.35$                                             |
|          | E TO ASSAME PRO, 45                                                                                          |
| 6        | Ve also know that $S_{2} = d_{n} \mathcal{I}$                                                                |
|          | T <sub>o</sub>                                                                                               |
|          | $d_n \approx 0.3$ since $n \approx 1$                                                                        |
|          | Assume 50 = the tensile rupture strength.                                                                    |
|          | •                                                                                                            |
| For a    | superimposed Mode I load, the maximum CTOD                                                                   |
|          | s at fracture, where J-> Jre:                                                                                |
|          | J <sub>IC</sub> = K <sub>IC</sub> (1-y2)                                                                     |
|          | E                                                                                                            |
| At       | fracture, $S_t = 0.3 \frac{(3 M f_{arm})^2 (1-0.25^3)}{(3.75 \times 10^5 M f_a)(250 M f_a)}$                 |
|          |                                                                                                              |
|          | St = 2.7x 10 m                                                                                               |
|          | 100000000000000000000000000000000000000                                                                      |
|          | St = 2.7 x 10 mm @ fracture                                                                                  |
|          | Lamuch lower than the fracture surface                                                                       |
|          | asperity height.                                                                                             |
|          |                                                                                                              |
| - 1      | he apparent fracture resistance in mode III will always be                                                   |
| higher - | than that in mode I because the crack faces are not able                                                     |
| to sep   | grate, which leads to closure locking. In pure mode I                                                        |
| loading  | , the surfaces of the crack will separate and fracture cur at a lower applied load. This reinforces the fact |
| , ,      |                                                                                                              |
| that     | mode I loading is most damaging                                                                              |

