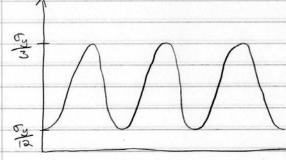

3.35 – Fracture and Fatigue Problem Set 5 – Solutions November 13, 2003

2.1) Cu	clic slip differs from monotonic slip in during fully reversed cyclic slip there is tation of the slip system. For this reason, rimary slip system remains the most highly d, confining slip to this plane	
that	during fully reversed cyclic slip there is	
no ro	Eation of the slip system. For this reason,	
the f	rimary slip system remains the most highly	
Stress	d, confining slip to this plane	
)	9	
2.2) Ve	in structures and PSB structures in FCC	
crystals	are composed mainly of edge dislocations	
because	edge dislocations of opposite character on	
parallel 1	lanes form dipoles, whereas screw dislocations	
can easily	cross slip and annihilate each other, leaving	
,)	e dislocations	


3) 1	DKen corresponds to da < 10 m/cycle
	Smallest crack advance detectable = 0.03 mm f = 2 Hz = 2 cycles /sec
	J- 2 MZ = 2 cycles/sec
Ho	w many cycles will it take to propante a crack a
dis	w many cycles will it take to propagate a crack a stance, da, of 0.03mm, such that \$\frac{da}{da} = 10^{-1} \text{m/cycle ?}
	$dN = \frac{da}{10^{-1} \text{m/cycle}} = \frac{3 \times 10^{-5} \text{m}}{10^{-1} \text{m/cycle}} = \frac{3 \times 10^{-6} \text{cycles}}{10^{-1} \text{m/cycle}}$
	10"m/cycle 10"m/cycle
AŁ	2Hz, how many cycles per day?
	(2 cycles) 3600sec / 29 hour = 17280000
	(2 cycles) (3600 sec) (24 hour) = 172800 cg
Ha.	
TIOW	many days
	many days? 3×10° cycles = 17.36 days 172800 cycles day
	day
	J

921×10-30	n^{t}	
Integrate Paris law $9.21 \times 10^{-2} \text{ m}$ $\int_{0}^{2.5/2} q^{-2.5/2} = 3 \times 10^{-10} (1.27)^{2.5}$	(246,14)2.5 (dN	*
1x10-3m	,	
, 9.21×10 m		
-49-0.25 = 5.182	×10-4 Nf	
1×10.3		
-4 (3.228 - 5.623) = 5.18	2×10-4 Nt	
Nf= 18,487 cyc	les	

Stime

Fracture occurs when
$$k_{Imax} = k_{Ic}$$

$$\frac{1}{3} \sigma_y \sqrt{\pi a_{cr}} = k_{Ic}$$

$$a_{cr} = \frac{9}{\pi} \left(\frac{k_{Ic}}{\sigma_y} \right)$$

$$a_{cr} = \frac{9}{\pi} \left(\frac{K_{\pm c}}{G_y} \right)^2$$

(ii) Derive
$$N_{f}$$
:
$$\frac{da}{dN} = C(\Delta K)^{m}$$

$$= C \left(\frac{\sigma_3}{4}\right)^m (\pi a)^{m/2}$$

$$\frac{da}{dN} = C\left(\frac{\sigma_{y}}{\sqrt{\pi}}\right)^{m} a^{m/2}$$

$$\frac{d}{dN} = \left(\frac{\sigma_{y}}{\sqrt{\pi}}\right)^{m} dN$$

$$\frac{d}{dN} = \left(\frac{\sigma_{y}}{\sqrt{\pi}}\right)^{m} dN$$

$$\frac{d}{dN} = \left(\frac{\sigma_{y}}{\sqrt{\pi}}\right)^{m} dN$$

$$\frac{d}{dN} = \left(\frac{\sigma_{y}}{\sqrt{\pi}}\right)^{m} N_{f}$$

$$\frac{dN}{dN} = \left(\frac{\sigma_{y}}{\sqrt{\pi}}\right)^{m} N_{f}$$