LECTURE SUMMARY

September 30th 2009

Crystal Structures in Relation to Slip Systems

Resolved Shear Stress

Using a Stereographic Projection to Determine the Active Slip System

Slip Planes and Slip Directions

- Slip Planes
 - Highest Planar Density
 - Corresponds to most widely spaced planes
- Slip Directions
 - Highest Linear Density
- Slip System
 - Slip Plane + Slip Direction

The FCC unit cell has a slip system consisting of the {111} plane and the <110> directions.

Slip Plane: {111} Figures by MIT OpenCourseWare.

Face Centered Cubic Slip Systems

FCC (eg. Cu, Ag, Au, Al, and Ni) Slip Planes {111} Slip Directions [110]

- The shortest lattice vectors are ¹/₂[110] and [001]
- According to Frank's rule, the energy of a dislocation is proportional to the square of the burgers vector, b²
- Compare energy
 - 1/2[110] dislocations have energy 2a²/4
 - [001] dislocations have energy a²
 - \rightarrow Slip Direction is [110]

Figure by MIT OpenCourseWare.

More Slip Systems

Metals	Slip Plane	Slip Direction	Number of Slip Systems
Cu, Al, Ni, Ag, Au	FCC {111}	<110>	12
α-Fe, W, Mo	BCC {110}	<111>	12
α-Fe, W	{211}	<111>	12
α-Fe, K	{321}	<111>	24
Cd, Zn, Mg, Ti, Be	HCP {0001}	<1120>	3
Ti, Mg, Zr	{1010}	<1120>	3
Ti, Mg	{1011}	<1120>	6

Resolved Shear Stress

□ What do we need to move dislocations?

- A Shear Stress!
 - $\sigma = F / A$

 $F\cos\lambda$ Component of force in the slip direction

- $A/\cos\phi$ Area of slip surface
- Thus the shear stress τ, resolved on the slip plane in the slip direction

$$\tau = F / A \cos \phi \cos \lambda = \sigma \cos \phi \cos \lambda$$

Schmid Factor

Note that Φ + λ ≠ 90 degrees because the tensile axis, slip plane normal, and slip direction do not always lie in the same plane

Cambridge. Used with permission.

Critical Resolved Shear Stress

 Critical Resolved Shear Stress, T_{CRSS}
the minimum shear stress required to begin plastic deformation or slip.

- Temperature, strain rate, and material dependent
- The system on which slip occurs has the largest Schmid factor

 $\tau = F / A\cos\phi\cos\lambda = \sigma\cos\phi\cos\lambda$

The minimum stress to begin yielding occurs when λ=Φ=45°
σ=2T_{CRSS}

Courtesy of DoITPoMS, University of Cambridge. Used with permission.

Determining Active Slip System

- There are two methods to determine which slip system is active
 - Brute Force Method- Calculate angles for each slip system for a given load and determine the maximum Schmid Factor
 - Elegant Method- Use stereographic projection to determine the active slip system graphically

Stereographic Projection Method

- 1 Identify the triangle containing the tensile axis
- 2 Determine the slip plane by taking the pole of the triangle that is in the family of the slip planes (i.e. for FCC this would be {111}) and reflecting it off the opposite side of the specified triangle
- 3 Determine the slip direction by taking the pole of the triangle that is in the family of directions (i.e. for FCC this would be <1-10>) and reflecting it off the opposite side of the specified triangle

Rotation of Crystal Lattice Under an Applied Load

- With increasing load, the slip plane and slip direction align parallel to the tensile stress axis
- This movement may be traced on the stereographic projection
- The tensile axis rotates toward the slip direction eventually reaching the edge of the triangle
 - Note that during compression the slip direction rotates away from the compressive axis
- At the edge of the triangle a second slip system is activated because it has an equivalent Schmid factor

More Physical Examples

Courtesy of DoITPoMS, University of Cambridge. Used with permission.

- Initial Elastic Strain- results from bond stretching (obeys Hooke's Law)
- Stage I (easy glide) results from slip on one slip system
- Stage II- Multiple slip systems are active. A second slip system becomes active when it's Schmid factor increases to the value of the primary slip system
- In some extreme orientations of HCP crystals, the material fractures rather than deforms plastically

3.40J / 22.71J / 3.14 Physical Metallurgy Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.