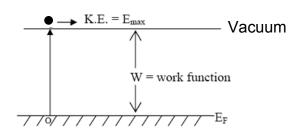
3.46 PHOTONIC MATERIALS AND DEVICES

Lecture 16: Detectors—Part 1

Lecture

Semiconductor Photon Detectors


Photodetector \equiv transducer P_{input}(optical) \rightarrow I_{output}(current)

Attributes

- efficient
- low noise
- uniform spectral response
- high speed
- linear
- small, integrated, reliable, low cost

1) Photodetectors

- a) Human eye: 10^8 dynamic range Retina: edge: 1.2×10^9 rod shaped cells (low light levels) center: 6×10^6 cone shaped cells (high light levels, color) (3 sets: red, green, blue) Cell diameter $\approx 2.5 \ \mu m$
- b) External photoemitters: A class of photodetectors called photoemissive in which electrons are emitted into a vacuum or gas.

$$\begin{split} \textbf{E}_{\text{max}} &= \textbf{h}\nu - \textbf{W}(\textbf{metal})\\ \textbf{E}_{\text{max}} &= \textbf{h}\nu - \big(\textbf{E}_{\text{g}} + \boldsymbol{\chi}\big)(\textbf{semiconductor})\\ \boldsymbol{\chi} &= \textbf{electron affinity}\\ &= \textbf{E}_{\text{vaccuum}} - \textbf{E}_{\text{CB}} \end{split}$$

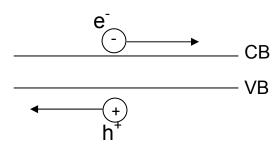
Notes

Supplemental reading:

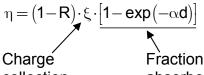
- 1. Fundamentals of photonics ch. 17
- Burle Electro-Optics Handbook §10 can be downloaded for free from: www.burle.com/cgi-bin/byteserver.pl/ pdf/Electro_Optics.pdf

Lecture

Photoemissive "surfaces"


 $\begin{array}{ll} \mbox{metals} \rightarrow \mbox{visible} & \eta_{i} \approx 10\% \\ \mbox{semiconductors} \rightarrow \mbox{IR} & \eta_{i} \approx 0.1\% \end{array}$

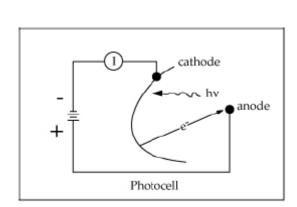
Photomultipliers


 A series of dynodes yields secondary electrons (M ≈ 10⁶) by field acceleration of photoelectron

 $I = \frac{\Delta Q}{\Delta \tau} = \frac{\varphi \cdot A \cdot t \cdot \eta_i \cdot gain \cdot e}{RC} = 10^{-8} A / photon$

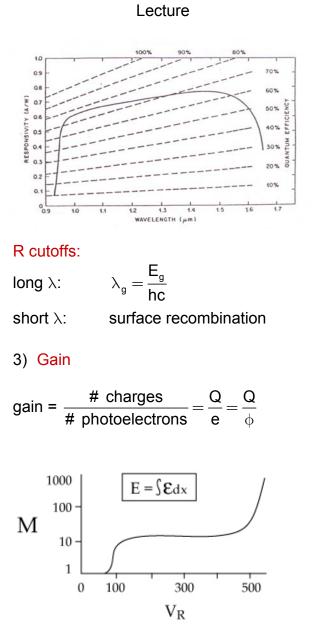
c) Internal photoemitters:

- generation
- transport
- multiplication ?
- 1) Quantum efficiency



collection efficiency Fraction of photons absorbed in active region

2) Responsivity

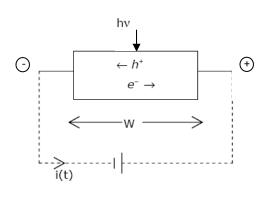

$$\mathsf{R} = \frac{\eta \mathsf{e}}{\mathsf{h}\nu} = \eta \cdot \frac{\lambda}{1.24} \,\mathsf{A}/\mathsf{W}$$

varies linearly with η , λ

Notes

Notes

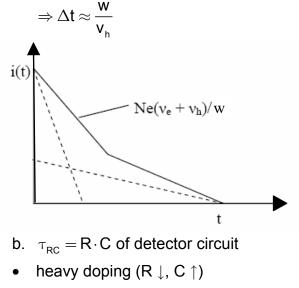
4) Response Time


Transit time $(\tau_{tr}) \equiv$ time for photocarriers to reach electrodes

Ramo's theorem:

$$i(t) = -\frac{Q}{W}v(t)$$

Notes


drift velocity: $\vec{v}_{d} = \mu \vec{E}$

[\uparrow same justification \downarrow]

electric field: $\vec{E} = V/w$

 \Rightarrow since each carrier moves <w/2>, the effective charge moving in the external circuit is e not 2e.

- a. usually $v_h < v_e$
- transit time spread
- τ_{tr} determined by slowest carrier

- small device area (C \downarrow)
- c. w collection length Wjunction << Wphotoconductor

Lecture

5) Photoconductor

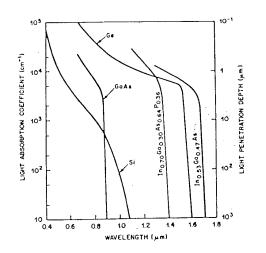
$$\begin{split} \Delta \sigma &= e \Delta n \big(\mu_e + \mu_h \big) \\ &= e \eta \tau \frac{\Phi}{w \cdot A} \big(\mu_e + \mu_h \big) \\ i_p &\approx e \eta \frac{\tau}{\tau_{tr}} \Phi \qquad \tau_{tr} \approx \frac{w}{v_e} \\ v_h \ll v_e \end{split}$$

 $\tau = \text{recombination lifetime}$

 $\frac{\tau}{\tau_{tr}} = \text{fraction of } e^{-} \text{ collected}$ en $\Phi = \text{generation rate/unit volume}$

Typical values

$$\label{eq:velocity} \begin{split} &w = 1 \text{ mm } &\Leftarrow \text{ slow } \\ &v_e = 10^7 \text{ cm/s} \\ &\tau_{tr} \geq 10^{\text{-8}} \text{ s} \end{split}$$


If $\tau \ll \tau_{\text{tr}}, \tau = \text{response time}$

 \therefore fast \equiv low R

6) Photodiodes

PIN: positive-intrinsic-negative APD: avalanche photodiode

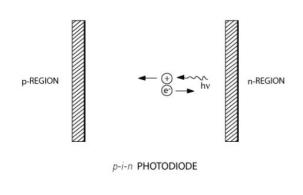
 λ = 1.3 μm or λ = 1.5 μm

Notes

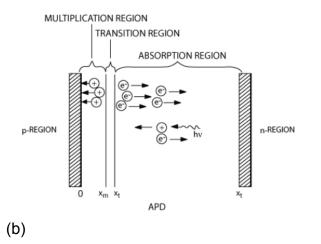
Lecture

InP substrate

 $\begin{array}{ll} \mbox{InGaAsP} & \lambda = 1.3 \ \mu \mbox{m} \\ \mbox{InGaAs} & \lambda = 1.55 \ \mu \mbox{m} \end{array}$


would like to have high $\alpha\!/\beta$

 α = ionization multiplication rate for e⁻

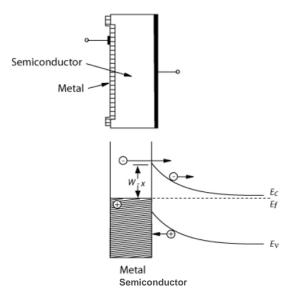

 β = ionization multiplication rate for \hbar^+

Bulk GaAs
$$\Rightarrow \frac{\alpha}{\beta} = 2$$

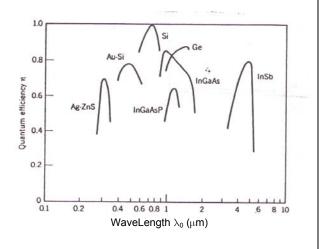
50 layer GaAs/AlGaAs $\Rightarrow \frac{\alpha}{\beta} = 8$

(a)

PIN


- easy to fabricate
- shot noise (thermal leakage)

Lecture


APD

- high gain bandwidth product
- heavily doped n-InP for M
- gain noise (M statistics)

7) Schottky Barries Photodiode

8) Relative performance

Notes

3.46 PHOTONIC MATERIALS AND DEVICES

Lecture 16: Detectors—Part 1

Lecture

9) Materials for IR detectors

NIR	SWIR (Short Wave)	MIR (Mid IR)	FIR (Far or long wave IR)
0.6-1.1 μm	1.1-2.5 μm	3-5 μ m	8-12 μm
Si, Ge	PbS, InGaAs (0.9-1.7 μm),	InSb, HgCdT	Ge
	Ge (0.7-1.85 μm)		

*wavelength range is practical detector values from various manufacturers