3.46 PHOTONIC MATERIALS AND DEVICES

Lecture 17: Detectors—Part 2

Lecture 17: Det	ectors
Lecture	
Detector Attributes efficiency noise speed linearity 	
"Digital" Sensitivity	
 Bit Error Rate charge carriers are created by photons in a Poisson random process 	
a) probability that a pair is generated in time interval $dt = \rho(t)$	
$\rho(t)dt = \frac{RP(t)}{q}dt$ $= \frac{\eta\lambda}{hc}P(t)dt$	
b) average # carriers generated	
$\overline{N} = \frac{\eta \lambda}{hc} \int_{t}^{t+T} P(t) dt$ $= \frac{\eta \lambda}{hc} E$	
energy in pulse of width T	
$I_{L} \qquad \qquad$	
c) probability the N = n charges in time interval T (average value of $N : \overline{N}$)	

$$P(N = n) = \frac{\overline{N}^{n} e^{\overline{N}}}{n!}$$
$$= \frac{\overline{N}^{n} exp(-\eta \lambda E/hc)}{n!}$$

3.46 Photonic Materials and Devices Prof. Lionel C. Kimerling

Notes

Notes

Lecture

Example

What is E required such that $P < 10^{-9}$ that a logical "0" will be detected when a logical "1" is transmitted?

• logical "0" \equiv no e⁻ h⁺ pairs

•
$$P(N = 0) = exp\left[-\frac{\eta\lambda E}{hc}\right] < 10^{-9}$$

 $\Rightarrow E > 21\frac{hv}{\eta}$
 $\Rightarrow \frac{21}{\eta} photons required$

d) Each bit is T_B seconds long \Rightarrow required power at detector

$$\mathsf{P}_{\mathsf{av}} = \frac{21 \cdot \mathsf{h}\nu/\eta}{2\mathsf{T}_{\mathsf{B}}}$$

- assumes only shot noise
- quantum limit of the detection process

 $\therefore \exp\left[-\frac{\eta E}{h\nu}\right] \leq BER$

2. Noise

$$\frac{S}{N} = \frac{P_{signal}}{P_{noise}} = \frac{\left\langle i_{S}^{2} \right\rangle}{\left\langle i_{N}^{2} \right\rangle}$$

- a) Shot Noise
 - quantization of charge q
 - quantization of light hv

$$\left< i_N^2 \right> = 2qIB$$

I = average diode current B = bandwidth of electronics

Notes

Lecture

- "white" noise
 - o independent of center frequency
- AC noise dependent on DC value of output current

 $I = I_{\rm L} + I_{\rm background} + I_{\rm dark}$

- RMS noise current $\equiv \sqrt{\left\langle i_N^2 \right\rangle}$
- shot noise is multiplied by an APD
- b) Thermal Noise
 - attribute of any resistive load

 $\left\langle i_{\scriptscriptstyle N}^{\scriptscriptstyle 2} \right\rangle \!=\! \frac{4k_{\scriptscriptstyle B}TB}{R}$

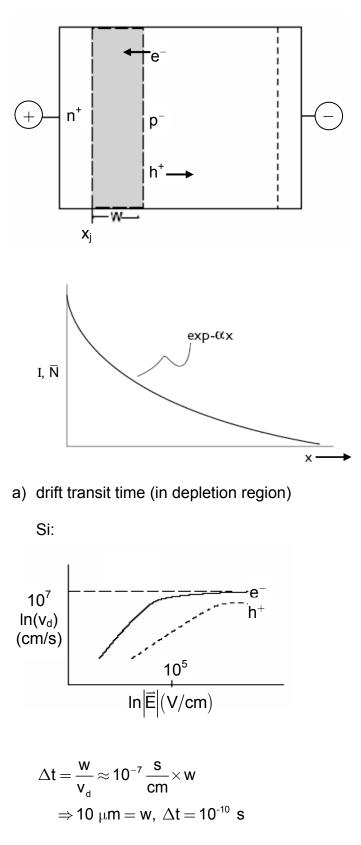
R = resistive load

- T = noise temperature of device
 - $\left< i_{\text{N}}^2 \right>$ independent of signal

Example APD

$$\begin{array}{rcl} M &=& 50 \\ I_D &=& 10 \ nA \\ R_o &=& 0.6 \ A/W \ (unamplified) \\ R_L &=& 50 \ \Omega \\ T &=& 300 \ K \\ B &=& 10 \ MHz \\ P_L &=& 5 \ nW \end{array}$$

$$i_{S|M=1} = R_o P_i = 3 \text{ nA} = I_L$$


$$\frac{S}{N} = \frac{\left\langle i_S^2 \right\rangle M^2}{2q(I_L + I_D)M^2B + \frac{4k_B TB}{R_L}}$$

$$\simeq 5.9$$

c) APD: shot noise dominates PIN: thermal noise dominates

3.46 Photonic Materials and Devices Prof. Lionel C. Kimerling

Notes

Notes

Lecture

b) diffusion time (outside w)

$$\begin{split} \Delta t &= \frac{x^2}{D_{n,p}} \\ D_{n,p} &= \left(\frac{k_B T}{q}\right) \mu_{n,p} \\ D_n \left(Si\right) &\simeq \frac{30 \ c^{-2}}{s} \\ \Delta t \left(x = 10 \ \mu m\right) &= \frac{\left(10^{-3}\right)^2}{30} = 3 \times 10^{-8} s \end{split}$$

• RC time constant $C = \frac{\varepsilon A}{w} \le 1 \text{ pF}$

Detector Design Rules

- a) $\eta \uparrow as w \uparrow as C \downarrow$
- b) $\tau_{tr} \uparrow as w \uparrow$
- c) design for w $\approx \frac{2}{\alpha} \label{eq:transformation} \tau_{tr} \approx RC$

PIN limit $\equiv \tau_{tr}$

- APD limit \equiv carriers drift to avalanche region
 - + drift of multiplied carriers out
 - + avalanche time