3.46 PHOTONIC MATERIALS AND DEVICES
 Lecture 4: Ray Optics, Electromagnetic Optics, Guided Wave Optics

Light Lecture
photon
exchanges energy with medium
$>$ Emission
$>$ absorption
$>$ scattering
electromagnetic wave

* nondissipative medium
> Propagation
$>$ Interference
$>$ Diffraction
ray optics
* small λ approx.
$>$ Geometric optics

Photon

$\mathrm{E}=\mathrm{h} \nu$
$h=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
$\lambda=\frac{\mathrm{c}}{\nu}$
mass $=0 ;$ charge $=0 ; \quad$ spin $=1$

Ray Optics

"Optical" properties
Complex index of refraction
$\mathrm{n}_{\text {complex }}=\mathrm{n}+\mathrm{iK}$
$\mathrm{n}=$ refractive index
$K=$ extinction coefficient
Complex dielectric function
$\varepsilon=\varepsilon_{1}+\dot{i} \varepsilon_{2}$

Kramers-Kronig relations
Relate $\varepsilon_{1}(\omega)$ and $\varepsilon_{2}(\omega)$
$\alpha \equiv$ absorption coefficient
$\alpha=\frac{2 \omega K}{c}$

Reflectivity (normal incidence)
$R=\frac{(n-1)^{2}+K}{(n+1)^{2}+K}$

- in transparent range of ω :

$$
\mathrm{K} \rightarrow 0 ; \mathrm{R} \rightarrow\left(\frac{\mathrm{n}-1}{\mathrm{n}+1}\right)^{2}
$$

Snell's Law

$\frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{n_{2}}{n_{1}}$
Total internal reflection
$\theta_{1}>\theta_{\text {ext }}=\sin ^{-1}\left(\frac{n_{2}}{n_{1}}\right)$
Reflection (materials $\mathrm{n}_{1}, \mathrm{n}_{2}$)
$R=\left(\frac{n-1}{n+1}\right)^{2}$ normal incidence
Diamond: $\mathrm{n} \approx 2.4$
TiO_{2} : $\quad \mathrm{n}=2.6$
$\mathrm{ZrSiO}_{4}: \quad \mathrm{n}=1.9$

Material	θ_{c}	n	R
Water	48.6°	1.33	0.02
Glass	41.8°	1.50	0.04
Crystal glass	31.8°	1.90	0.10
diamond	24.4°	2.42	0.17

Lecture

Index matching
$\mathrm{n}_{\text {(medium })}=\mathrm{n}_{\text {(material })} \Rightarrow$ no reflection

Anti-reflection coating

$$
\begin{aligned}
R & =\frac{n_{2}^{2}-n_{1} n_{3}}{n_{2}^{2}+n_{1} n_{3}} \quad \frac{n_{1} \text { (air) }}{\frac{n_{2} \text { (coating) }}{n_{3} \text { (material) }} \frac{\mathrm{t}}{}} \begin{array}{l}
\text { 个 } \\
\end{array}=0 \text { when } n_{2}=\sqrt{n_{1} n_{3}}
\end{aligned}
$$

Example

for solar cell: n_{3} (silicon)
$\mathrm{n}_{2} \mathrm{t}=\frac{\lambda}{4} \quad$ quarter wave film
for glass:
$\mathrm{n}_{3}=1.5 ; \quad$ air : $\mathrm{n}_{1}=1.0 \Rightarrow \mathrm{n}_{2}=1.22$
$\mathrm{MgF}_{2} \quad \mathrm{n}_{2}=1.384 \Rightarrow \mathrm{R}=0.12$

Example

AR coating for silicon

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{Si}}=3.5 \Rightarrow \mathrm{n}_{\mathrm{AR}}=1.87 \\
& \mathrm{n}_{\mathrm{sio}_{2}}=1.51 \\
& \lambda=550 \mathrm{~nm} \quad \rightarrow \mathrm{t}=91 \mathrm{~nm}
\end{aligned}
$$

Lecture

Electromagnetic optics

Electromagnetic Field $\quad \vec{E}(\vec{r}, t), \vec{H}(\vec{r}, t)$
Maxwell's Equations
$\vec{\nabla} \times \vec{H}=\varepsilon_{0} \frac{\partial \stackrel{\rightharpoonup}{E}}{\partial t} \quad \vec{\nabla} \times \vec{E}=-\mu_{0} \frac{\partial \vec{H}}{\partial t}$
$\vec{\nabla} \cdot \bar{E}=0$
$\vec{\nabla} \cdot \vec{H}=0$
Monochromatic EM Wave
$\overrightarrow{\mathrm{E}}(\overrightarrow{\mathrm{r}}, \mathrm{t})=\operatorname{Re}\left\{\overrightarrow{\mathrm{E}}^{\prime}(\vec{r}) \exp (\mathrm{j} \omega \mathrm{t})\right\}$
Each of the six scalar components of $\vec{E} \& \vec{H}$ must satisfy the Helmholtz Equation
$\nabla^{2} u+k^{2} u=0$
wave vector:
$\mathrm{k}=\frac{\omega}{\mathrm{c}}=\omega\left(\varepsilon \mu_{0}\right)^{1 / 2}=\mathrm{nk}_{0}=\frac{\mathrm{n} \omega}{\mathrm{c}_{0}}=\frac{2 \pi}{\lambda}$
$c=\frac{\omega}{k}$: phase velocity; velocity $v_{g}=\frac{d \omega}{d k}=$ group

The carrier propagates with the phase velocity c. The slowly varying envelop propagates at the group velocity, v_{g}.

Lecture

Transverse EM Plane Waves (TEM)

- $\vec{E}(\vec{r}, t), \vec{H}(\vec{r}, t)$ are plane waves with wave vector \vec{k}
- $\overrightarrow{\mathrm{E}}, \overrightarrow{\mathrm{H}}, \overrightarrow{\mathrm{k}}$ are mutually orthogonal
$\vec{E}(\vec{r})=E_{0} e^{-j \overrightarrow{k r} r}, \vec{H}(\vec{r})=H_{0} e^{-j \overrightarrow{k r}}$

Phenomenology of Properties

Absorption

$$
\begin{aligned}
& \chi=\chi^{\prime}-\mathrm{i} \chi^{\prime \prime} ; \varepsilon=\varepsilon_{0}(1+) \\
& \mathrm{k}=\omega\left(\varepsilon \mu_{0}\right)^{\frac{1}{2}}=(1+)^{\frac{1}{2}} \mathrm{k}_{0}=\left(1+\chi^{\prime}+\mathrm{i}^{\prime \prime}\right)^{\frac{1}{2}} \mathrm{k}_{0} \\
&=\beta-\mathrm{i} \frac{1}{2} \alpha \\
& \mathrm{U}(\mathrm{x})=\mathrm{Ae}^{-\mathrm{ikx}}=\mathrm{Ae}^{\frac{-a x}{2}} \mathrm{e}^{-i \mathrm{~B} x} \\
& \mathrm{I}(\mathrm{x}) \propto|\mathrm{U}(\mathrm{x})|^{2} \propto \mathrm{e}^{-\mathrm{ax}}
\end{aligned}
$$

Resonant atoms in host medium

$$
\mathrm{n}(\nu) \approx \mathrm{n}_{0}+\frac{\mathrm{x}^{\prime}(\nu)}{2 \mathrm{n}_{0}}, \alpha(\nu) \approx-\left(\frac{2 \pi \nu}{\mathrm{n}_{0}} 0\right) \chi^{\prime \prime}(\nu)
$$

Fiber materials for transmission

- Electronic polarizability not important for IR fibers
- Heavy atom \rightarrow weaker bond \rightarrow long λ_{0}

Frequency dependence of the several contributions to polarizability.

Dispersion $\quad \equiv \frac{\mathrm{dn}}{\mathrm{d} \lambda}$

group index $\quad n_{g}=n-\lambda_{0} \frac{d n}{d \lambda_{0}}$
group velocity
$v_{g}=\frac{c_{0}}{n_{g}}=c_{0}\left(n-\lambda_{0} \frac{d n}{d \lambda_{0}}\right)^{-1}$
Dispersion coefficient
$D_{\lambda}=\frac{d}{d \lambda}\left(\frac{1}{v_{g}}\right)=-\frac{\lambda_{0}}{C_{0}} \frac{d^{2} n}{d \lambda_{0}{ }^{2}}$
$D_{\lambda}=\frac{\text { temporal spread }}{\text { length } \cdot \text { spectral width }}=\frac{\mathrm{ps}}{\mathrm{km} \cdot \mathrm{nm}}$
$\left|D_{\lambda}\right| \sigma_{\lambda}=\frac{\text { seconds of pulse broadening }}{\text { distance travel }}$
$\sigma_{\lambda}:$ spectral width
pulse delay: $\tau_{d}=\frac{Z}{v}$
pulse spreading: $D_{\nu}=\frac{\mathrm{d}}{\mathrm{d} \nu}\left(\frac{1}{\mathrm{v}_{\mathrm{g}}}\right)$
$\sigma_{\tau}=\left|D_{\nu}\right| \sigma_{\nu} \mathbf{z}$ temporal width

Gaussian pulse

$A(0, t)=\exp -\left(\frac{t^{2}}{\tau_{0}{ }^{2}}\right)$

$$
\tau_{2}=\tau_{0}\left[1+\left(\frac{z}{z_{0}}\right)^{2}\right]^{\frac{1}{2}} \text { Lecture }
$$

Polarization

The time course of direction of $\vec{E}(\vec{r}, t)$

Helical rotation of circular polarization

1. Plane Polarization
$\overrightarrow{\mathrm{E}}$ at fixed direction of $\overrightarrow{\mathrm{k}}$
$\overrightarrow{\mathrm{E}}(\mathrm{z}, \mathrm{t})=\mathrm{a}_{\mathrm{y}} \overrightarrow{\mathrm{y}} \mathrm{e}^{\mathrm{i}(\mathrm{kz}-\omega t)} ; \omega=\mathrm{kc}$
monochromatic light

$$
\begin{aligned}
\overrightarrow{\mathrm{E}}(\overrightarrow{\mathrm{r}}, \mathrm{t}) & =\operatorname{Re}\left\{\overrightarrow{\mathrm{A}} \exp \left[i 2 \pi\left(\mathrm{t}-\frac{\mathrm{z}}{\mathrm{c}}\right)\right]\right\} \\
\nu & =\text { frequency of photons } \\
z & =\text { direction of propagation } \\
c & =\text { phase velocity }
\end{aligned}
$$

Amplitude has $\overrightarrow{\mathrm{x}}$ and $\overrightarrow{\mathrm{y}}$ component:
$\vec{A}=A_{x} \vec{x}+A_{y} \vec{y}$
$\vec{E}(z, t)=E_{x} \vec{x}+E_{y} \vec{y}$

$$
a_{x} \cos \left[2 \pi v\left(t-\frac{z}{c}\right)+\phi_{x}\right]
$$

\Rightarrow at fixed z, \vec{E} rotates periodically in $x-y$ plane
2. General Solution: elliptical polarization
$\frac{E_{x}^{2}}{a_{x}^{2}}+\frac{E_{y}^{2}}{a_{y}^{2}}-2 \cos \phi \frac{E_{x} E_{y}}{a_{x} a_{y}}=\sin ^{2} \phi$

Matrix Representation

Matrix representation is a simplified way to perform first order calculations where small angles can be assumed. It can be used for order of magnitude calculations to obtain general values for a broad range of optical devices.
$E=\left(\begin{array}{l}E_{x} \\ E_{y} \\ E_{z}\end{array}\right) \quad \begin{aligned} & A_{x}=a_{x}^{i \phi x} \\ & A_{y}=a_{y} e^{i \phi y}\end{aligned}$
"Jones" vector: $\vec{J}=\left[\begin{array}{l}A_{x} \\ A_{y}\end{array}\right]=$ operator on \vec{E} $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ linear poliarized in \vec{x}
 $\left[\begin{array}{c}\cos \theta \\ \sin \theta\end{array}\right]$ linear poliarized at θ to \vec{x}

Linear polarization $\equiv \Sigma$ (right + left circular)
$\left[\begin{array}{c}\cos \theta \\ \sin \theta\end{array}\right]=\frac{1}{\sqrt{2}} \mathrm{e}^{-\mathrm{i} \mathrm{\theta}}+\frac{1}{\sqrt{2}} \mathrm{e}^{\mathrm{i} \theta}$
Jones Transformation Matrix

$\overrightarrow{\mathrm{J}}_{2}=\overrightarrow{\mathrm{T}}_{1}$
$\binom{A_{2 x}}{A_{2 y}}=\left(\begin{array}{ll}T_{11} & T_{12} \\ T_{21} & T_{22}\end{array}\right)\binom{A_{1 x}}{A_{1 y}}$

Linear Polarizer

$\mathrm{T}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ (polarizes wave in x-direction)
$\mathrm{A}_{1 \mathrm{x}}, \mathrm{A}_{1 \mathrm{y}} \rightarrow \mathrm{A}_{1 \mathrm{x}}, 0$
$\overrightarrow{\mathrm{E}}_{\text {out }}=\overrightarrow{\mathrm{T}}^{-}{ }_{\text {in }}$

Guided Wave Optics - Introduction

- Free space
- Guided by confinement in high refractive index medium

Optical wave guide $\mathrm{n}_{2}>\mathrm{n}_{1}$

Notes

Planar Mirrors

TEM plane waves
$\lambda=\frac{\lambda_{0}}{\mathrm{n}}$
$\mathrm{k}=\mathrm{nk}_{0}$
$\mathrm{k}=\mathrm{nk}_{\mathrm{o}}$
$c=\frac{c_{0}}{n}$
polarized in x-direction
$\overrightarrow{\mathrm{k}}$ in y-z plane at θ to z-axis

1. $\vec{E}|\mid$ mirror plane
2. each reflection $\rightarrow \Delta \phi=\pi$ with $\overrightarrow{\mathrm{A}},|\overrightarrow{\mathrm{k}}|$ unchanged
3. self-consistency: after two reflections, wave reproduces itself \equiv eigenmode of wave
\Rightarrow "bounce angles" θ are discrete (quantized) $\mathrm{m} \lambda=2 \mathrm{~d} \sin \theta_{\mathrm{m}}$
$\vec{E}_{m}(\mathrm{y}, \mathrm{z})=\mathrm{U}_{\mathrm{m}}(\mathrm{y}) \exp \left(-\mathrm{i} \beta_{\mathrm{m}} \mathrm{z}\right)$
$\beta=k_{z}=k \cos \theta$ propagation constant
$=\beta_{\mathrm{m}}$ (quantized) $=k \cos \theta_{\mathrm{m}}$
$\mathrm{U}_{\mathrm{m}}(\mathrm{y})=$ transverse distribution

(a) Condition of self-consistency: as a wave reflects twice it duplicates itself

(b) At angles for which self-consistency is satisfied, the two waves interfere and create a wave that does not change with t.

Optical power $\left.\propto E\right|^{2} \propto a_{m}^{2}$
Number of Modes M
$M \geq \frac{2 d}{\lambda}$

$$
\begin{aligned}
& M \uparrow \text { with } d \\
& \lambda_{\max }=2 d: \text { cut off } \lambda \\
& \nu_{\min }=\frac{c}{2 d}: \text { cut off } \nu \\
& d \leq \lambda \leq 2 d \quad \text { single mode }
\end{aligned}
$$

Field distributions of the modes of a planar-mirror waveguide

Group velocity of pulse

$$
v_{g}=\frac{d \omega}{d \beta}
$$

$$
\beta_{\mathrm{m}}^{2}=\left(\frac{\omega}{\mathrm{c}}\right)^{2}-\frac{\mathrm{m}^{2} \pi^{2}}{\mathrm{~d}^{2}} \text { dispersion relation }
$$

$$
v_{\mathrm{mode}}=\frac{\mathrm{d} \omega}{\mathrm{~d} \beta_{\mathrm{m}}}=\mathrm{c}^{2} \frac{\beta_{\mathrm{m}}}{\omega}
$$

$$
=c^{2} \frac{\mathrm{k} \cos \theta_{\mathrm{m}}}{\omega}=\mathrm{c} \cdot \cos \theta_{\mathrm{m}}
$$

- longer zigzag path \rightarrow slower group velocity
- different modes \rightarrow different $\mathrm{v}_{\mathrm{g}} \rightarrow$ different transverse $u(y)$ as wave propagates.

