3.46 PHOTONIC MATERIALS AND DEVICES

Lecture 1: Optical Materials Design Part 1

Lecture	Notes
Goal: To develop principles for optical materials design.	
Approach: Physical basis of properties; use properties in design.	
Electromagnetic Field	
Apply voltage: $\vec{E} = (\vec{r}, t)$	
Apply current: $\vec{H} = (\vec{r}, t)$	
Maxwell's Equations	
(free space, no charge/current present)	
$\bar{\nabla} \times \bar{H} = \varepsilon_0 \frac{\partial \bar{E}}{\partial t} \qquad \qquad \bar{\nabla} \times \bar{E} = -\mu_0 \frac{\partial \bar{H}}{\partial t}$	
$\vec{\nabla} \cdot \vec{E} = 0 \qquad \qquad \vec{\nabla} \cdot \vec{H} = 0$	
EM wave	
Wave equation	
$\nabla^2 u - \frac{1}{c_0^2} \frac{\partial^2 u}{\partial t^2} = 0$	
<i>u</i> : scalar field profile	

(free space) speed of light

$$c_0 = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} = 3 \times 10^8 \text{ m/s}$$

- $ε_0$ = permittivity of free space = $\frac{1}{36\pi} \times 10^{-9}$ Farad/m (MKS)
- μ_0 = permeability of free space = $4\pi \times 10^{-7}$ Henry/m (MKS)

$$\varepsilon_0\mu_0c_0^2=1$$

Light in a Medium

$$c = \frac{1}{\sqrt{\varepsilon \mu}}$$

$$\vec{D} = \varepsilon \vec{E} = \varepsilon_0 \vec{E} + \vec{P}$$

polarization density

static relation (time independent) between \overline{P} and ϵ

 $\vec{P} = \varepsilon_0 \chi \vec{E}$ scalar electric susceptibility

$$\varepsilon = \varepsilon_0 (1 + \chi)$$

electric permittivity of medium

 $\frac{\varepsilon}{\varepsilon_0}$ = dielectric constant

	$rac{arepsilon}{arepsilon_0}$ (static)
Si	11.7
Ge	16
LiNbO ₃	43
BaTiO ₃	3600

Static: $\nu = 0$

Notes

Lecture

$$\nabla^2 u - \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = 0$$

$$c = \frac{1}{\sqrt{\varepsilon \mu}}$$

c = speed of light in medium

Refractive Index (n)

n = $\frac{\text{speed of light in free space}}{\text{speed of light in medium}}$

$$c = \frac{c_0}{n}$$

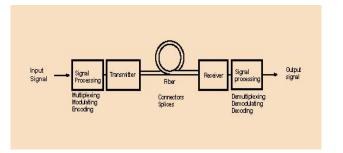
frequency dependence:

frequency: ν wavelength (free space): $\lambda_{\!\scriptscriptstyle 0}$

$$\lambda_{\!_0}\nu\,{=}\,c_{\!_0}$$

$$n(\nu) = \sqrt{\frac{\varepsilon(\nu)}{\varepsilon_0}} = \sqrt{1 + \chi(\nu)}$$

MATERIALS DESIGN


- Performance Goals
- Constraints
- Methodology
- Tradeoffs
- Options
- Optimization

BUILDING A LEARNING CURVE

- Performance Goal
- Barriers
- Timeline (with iterations)
- Incremental Improvement

Notes

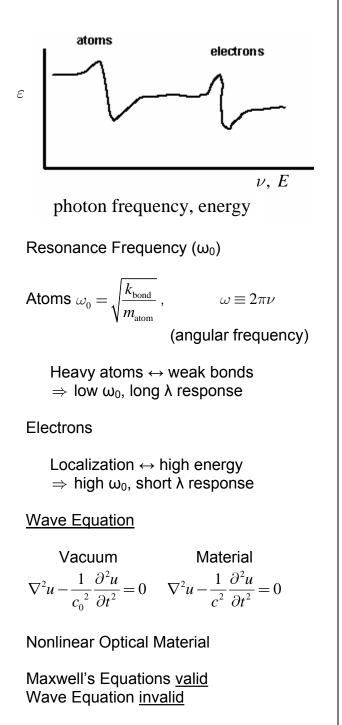
Lecture

Fiber-optic communication system

Operating Wavelength and Frequently Used Components In Fiber-Optic Links.

Wave- length λ₀(µm)	Fiber	Source	Detector
0.87	Multimode step-index	LED AlGaAs	p-i-n Si
1.3	Multi-mode graded-index	Laser InGaAsP	p-i-n Ge
1.55	Single-mode	Laser InGaAsP	APD InGaAs

Systems Design


Laser		
Ps	mW	Power
σλ	nm	Spectral Bandwidth

Fiber		
α	dB/km	Attenuation
σ_{τ}/L	ns/km	Response Time
L	km	Length

Detector		
\overline{n}_0	photons/bit	Sensitivity
B ₀	bits/s	Data Rate

Waveguide Materials Selection

Resonances \Rightarrow absorption, dispersion

 $\nabla^{2}\vec{E} - \frac{1}{c^{2}}\frac{\partial^{2}\vec{E}}{\partial t^{2}} = \mu_{0}\frac{\partial^{2}\vec{P}}{\partial t^{2}}$

Notes

Lecture

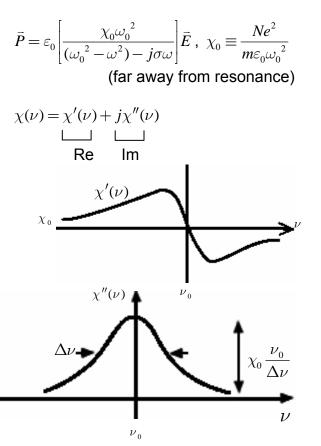
Dispersion

Dipoles in material respond as harmonic oscillators

Dynamic Relation (time dependent) between P(t) and E(t)

$$\vec{E}(t) = a_1 \frac{d^2 \vec{P}}{dt^2} + a_2 \frac{d \vec{P}}{dt} + a_3 \vec{P}$$

$$\begin{array}{c} & & \\ & \\ accel. & vel. & x \text{ (position)} \end{array}$$


Linear differential equation

Resonances

Driven simple harmonic oscillators

$$\frac{d^2\vec{P}}{dt^2} = -\sigma \frac{d\vec{P}}{dt} - \omega_0^2 \vec{P} + \omega_0^2 \varepsilon_0 \chi_0 \vec{E}$$

 $\vec{P} = \underbrace{N(e\vec{x})}_{V} = \varepsilon_0 \chi(\nu) \vec{E}$ $\downarrow Dipole movement$ # charges/unit volume

